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Data gaps and the policy 
response to the novel 
coronavirus

James H. Stock1

Date submitted: 4 April 2020; Date accepted: 5 April 2020

This note lays out the basic Susceptible-Infected-Recovered (SIR) 
epidemiological model of contagion, with a target audience of economists 
who want a framework for understanding the effects of social distancing and 
containment policies on the evolution of contagion and interactions with 
the economy. A key parameter, the asymptomatic rate (the fraction of the 
infected that are not tested under current guidelines), is not well estimated 
in the literature because tests for the coronavirus have been targeted at the 
sick and vulnerable, however it could be estimated by random sampling of 
the population. In this simple model, different policies that yield the same 
transmission rate β have the same health outcomes but can have very different 
economic costs. Thus, one way to frame the economics of shutdown policy is as 
finding the most efficient policies to achieve a given β, then determining the 
path of β that trades off the economic cost against the cost of excess lives lost by 
overwhelming the health care system.

1	 Professor of Political Economy, Harvard University. I thank Andy Atkeson, Oleg Itshoki, Erin Lake, and Arash 
Nekoei for helpful comments.
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This note lays out the basic Susceptible-Infected-Recovered (SIR) epidemiological model of contagion, 

with a target audience of economists who want a framework for understanding the effects of social 

distancing and containment policies on the evolution of contagion and interactions with the economy.1 

The model is calibrated to the most recent data. Its simple nature abstracts from many important 

considerations, and its output is not intended to supersede estimates from more sophisticated 

epidemiological models. 

This note makes four main points. First, the effect of social distancing and business shutdowns on 

epidemic dynamics enters the model through a single parameter, the case transmission rate β. For a 

specified case transmission rate, the policy design question is how to achieve that case transmission rate 

while minimizing economic cost. A second economic question is, what is the optimal case path for β, 

trading off the economic cost of that path against the costs in deaths. The model serves to focus attention 

on these questions of central importance in the interaction between health policy and economic policy. 

Second, the parameters of the model are not well estimated in the literature on the coronavirus because of 

the lack of available data. Data on prevalence, for example, is obtained from positive rates of testing for 

the coronavirus, however so far tests have been rationed and almost entirely have been administered to a 

selected population, those at risk and showing symptoms. Thus, the fraction of tests that are positive do 

not estimate the population rate of infection. 

Third, using Bayes Law, it is possible to re-express the model in terms of β and the asymptomatic rate, 

which is the fraction of the infected who show sufficiently mild, or no, symptoms so that they are not 

tested under current testing guidelines. The virtue of re-expressing the model this way is that it makes use 

of the positive testing rate, on which there is good data. The COVID-19 asymptomatic rate is unidentified 

in our model and recent point estimates in the epidemiological literature range from 0.18 to 0.86 (wider if 

sampling uncertainty is incorporated). However, the asymptomatic rate could be estimated accurately and 

quickly by testing a random sample of the overall population. 

1 Subsequent to writing this note, two very good and closely related papers have come out as NBER working papers, 
Atkeson (2020) and Eichenbaum, Rebelo, and Trabant (2020). Atkeson (2020) works through the SIR model and 
provides simulations for a calibrated version under different isolation scenarios. Eichenbaum, Rebelo, and Trabant 
(2020) merge the SIR model with a representative agent macro model to track macroeconomic outcomes. Relative to 
those papers, the contribution here is to illustrate the dependence of the economic outcomes on some parameters that 
are very poorly determined in the current literature, and to show how the model can be calibrated using data on 
testing from a sample that is selected under historical testing guidelines.  
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Fourth, the policy response and its economic consequences hinge on the value of the asymptomatic rate. 

We illustrate this for three policy paths for β representing various levels of shutdown and follow-up 

measures: two “flatten-the-curve” paths and a virus containment path. These different paths would have 

very different economic consequences, although those are not modeled. The health outcomes on the 

flatten-the-curve measures depend strongly on the asymptomatic rate. 

 

A simple calibrated epidemiological model 

 

Under the simplifying assumptions that the population mixes homogeneously, that the asymptomatic are 

as infectious as the symptomatic (possibly not true, see Li et. al. (2020)), that the population is equally 

susceptible to contagion, and that those who have been previously infected are no longer susceptible, the 

infection rate follows the so-called SIR model (see for example Allen (2017)). The simple SIR model 

used here abstracts from mortality. The discrete-time version of the SIR model at the weekly time scale is: 

 

1
1

t
t t

SS I
N

 −
− = −         (1) 

1t tR I − = ,         (2) 

1
1 1

t
t t t

SI I I
N

 −
− − = −         (3) 

 

where St is the number of susceptible, It is the number of infected, Rt is the number of recovered, and N is 

the (constant) total population. Assuming that everyone in the population is initially susceptible, then N = 

St + It + Rt. The coefficient β is the transmission rate and γ is the recovery rate.  

 

Equation (1) says that the number of newly infected is the number of prior infected times the transmission 

rate times the fraction of the population that is susceptible; the number of susceptibles is reduced one-for-

one by the number of newly infected. Equation (2) says that the number of recovered increases by the 

number recovered in the current period. Equation (3) says that the current number of infections increases 

by the number of new infections, minus the number of recoveries, which follows from the identity N = St 

+ It + Rt. 

 

A common summary of disease transmission is the basic reproduction number, R0, which is R0 = β/γ. R0 is 

the total number of cases produced by contagion from a single case, when the entire population is 

susceptible and β and γ are at their no-policy values.  
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In this model, policy operates by manipulating the values of the parameters. The baseline values of β and 

γ  can be considered no-policy values. Self-quarantine, social distancing, and school and business closures 

act to reduce the transmission rate β. Health interventions, such as medical treatment or drugs (should 

they become available) could serve to increase the recovery rate γ. Policies that decrease β and/or increase 

γ serve to reduce R0. 

 

Parameter values and observable implications 

 

The model has two unknown parameters, β and γ. For the coronavirus, surprisingly little data exists to 

estimate β and γ because testing has been limited and the testing that has been done has largely been 

targeted to the sick, especially the sick who are either the most vulnerable or who might benefit the most 

from hospitalization. That is, testing has largely been of the symptomatic. Such testing guidelines miss 

cases that are variously referred to as asymptomatic or undetected, which different concepts although I 

treat them here as synonymous. A case can be undetected because the individual has no symptoms, 

because she has sufficiently mild symptoms (cold or allergy symptoms) that she did not think to report the 

case, or because she reported her symptoms to a medical professional but did not meet strict guidelines 

for receiving the test. 

 

Estimation of the model in a conventional sense, that is, fitting (1) - (3) using time series data, is not 

possible because there are no data on It and Rt with which to fit the model. Obtaining estimates of It would 

require ongoing random testing of the population, which has not happened. Similarly, estimates of Rt 

could be deduced from It (given γ), or alternatively could be obtained by ongoing random sampling of 

tests for serum antibodies in response to the coronavirus, however such tests are not yet widely available 

and have not been deployed on random samples in the United States. 

 

The absence of random testing of the population poses an additional problem. Although the recovery rate 

γ for the seriously ill can be estimated from data on those whose disease progression has been tracked, it 

is not estimated among the asymptomatic. The recovery rate plausibly differs among the symptomatic and 

asymptomatic, complicating direct estimation of γ from medical case data.  

 

Although there are no data on It and Rt, there are widely available data on the results of testing (e.g., 

Roser, Ritchie, and Ortiz-Ospina (2020)). Because testing in the United States has largely focused on the 

symptomatic (putting aside small nonrepresentative asymptomatic groups like NBA players), it is 
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plausible that the positive testing rate estimates the rate of infection among the symptomatic. Using Bayes 

law, the model can be augmented to take advantage of time series data on the positive testing rate. 

 

The positive testing rate can be used to calibrate the SIR model as follows. Dividing both sides of  (1) - 

(3) by N expresses all quantities as population rates or, at the individual level, probabilities. Under the 

simplifying assumption that only the symptomatic are tested, we can use Bayes law to express the 

positive testing rate in terms of the symptomatic rate (the fraction of infections that are symptomatic): 

 

 

 
( )

 
 

Pr Pr Pr
Pr 1

Pr Pr
t t t t

t t a
t t

Symptomatic I I I
I Symptomatic

Symptomatic Symptomatic


    = = −    (4) 

 

where It and St refer to the infected and susceptible as above and where Pra t tAsymptomatic I =     

1 Pr t tSymptomatic I= −     is the asymptomatic rate (the undetected infection rate).  

 

The fraction of the population that is symptomatic (the denominator in (4)) is,  

 

     

 

( )      ( )0

Pr Pr Pr Pr Pr

Pr Pr

1 Pr Pr Pr ,

t t t t t t t

t t t

a t t t

Symptomatic Symptomatic I I Symptomatic S S

Symptomatic R R

I s S R

=   +     

+   

= − + +

  (5) 

 

where s0 is the baseline rate of symptoms among the susceptible and recovered (normal colds and 

allergies).  

 

Assuming that testing has been random among the symptomatic, the fraction of tests that are positive 

estimates Pr t tI Symptomatic   . The expanded system (1) - (5) has five equations and four parameters: 

β, γ, πa, and s0. 

 

I do not explore estimation of the model here using time series data on the positive testing rate, although 

that should be possible. Instead, I illustrate its use and the policy importance of the key parameter πa, the 

asymptomatic rate in a calibrated simulation. 
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Model calibration and simulation. 

 

I now turn to a numerical illustration of the model and policy interventions. For γ, I assume that the half-

life of an infection is 6 days (γ = 0.55). I set s0 = 0.02. For the week of March 21, 2020, the positive 

testing rate in the United States was approximately 10% (Roser, Ritchie, and Ortiz-Ospina (2020)). as 

initial conditions, I assume that there were 50 (unknown) cases in the US in the week ending January 4, 

2020. Even with these calibrations, the model (1) - (5) is underidentified by one parameter. I therefore fix 

the asymptomatic rate πa at a predetermined value and solve for β such that the positive testing rate is 

10% for the week ending March 21, 2020. 

 

The limited available evidence on the asymptomatic rate πa has been reviewed in Qui (March 20, 2020). 

Mizumoto et al’s (March 12, 2020) estimate of the asymptomatic rate suggested it could be as low as 

18%, however that study used data from the Diamond Princess which is heavily skewed towards elderly 

tourists and is thus unlikely to be representative. Other estimates are higher, including 31% (Nishiura et. 

al. (February 13, 2020)) for 565 Japanese nationals evacuated from Wuhan, however asymptomatic was 

defined as showing no symptoms, not simply falling short of US testing guidelines. Early data from 

Iceland suggest an asymptomatic rate of roughly one-half, however that uses a narrow definition of 

asymptomatic; a looser definition closer to US testing guidelines suggests a much higher asymptomatic 

rate2. Li et. al. (March 16, 2020) estimate a much higher rate of 86% for undetected cases for China. None 

of these studies are for representative random samples in the United States. Based on this limited 

evidence, I adopt two values of the asymptomatic rate, 0.30 (for example, used in Pueyo (March 19, 

2020) and 0.86. 

 

Policy paths. Shutdown policy operates through β. I consider three social distancing/economic shutdown 

cases. None are optimized and numerical values should not be taken literally. Rather, the point is to 

illustrate the sensitivity of the outcomes to the asymptomatic rate or, equivalently, to illustrate how 

different the paths for β (or equivalently, R0 =β/γ) need to be to achieve a given infection rate under 

different values of the asymptomatic rate. 

2 Iceland started a large-scale voluntary testing program in the second week of March. A March 15 report on initial 
results states “Of those samples which have thus far been taken, 700 have been tested. Kári [CEO of deCODE 
Genetics, the company running the testing] says that about half of those who tested positive have shown no 
symptoms, and the other half show symptoms have having a regular cold.” (The Reykjuavik Grapevine, March 15, 
2020 at https://grapevine.is/news/2020/03/15/first-results-of-general-population-screening-about-1-of-icelanders-
with-coronavirus/, also see https://www.government.is/news/article/2020/03/15/Large-scale-testing-of-general-
population-in-Iceland-underway/.) Under current US testing guidelines, both categories of cases would largely be 
untested and thus undetected. 
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The three shutdown paths of R0 are shown in Figure 1.3 Paths (A) and (B) represent two different “flatten 

the curve” strategies, in which the infection rate is managed so as not to overwhelm the health system but 

eventually the population achieves herd immunity. In contrast, path (C) aims to suppress the virus until a 

vaccine is developed. Specifically, path (A) posits moderate shutdowns that continue through the end of 

April, which are then slowly lifted, with complete lifting in the final week of June. Path (B) posits more 

severe shutdowns continuing for three months, which are then slowly lifted over the next five months. 

Path (C) shows what is in effect a total shutdown lasting for three months, with subsequent monitoring, 

ongoing testing, ongoing social distancing, and contact tracing with quarantining. Under path (C), R0 is 

0.32 for 5 weeks, a value taken from Wang et. al.’s (March 6, 2020) estimate of R0 in Wuhan after total 

shutdown measures were imposed (they estimate a pre-policy R0 of 3.86).  

 

Figure 1. Three policy-induced paths of R0 

 
 

The epidemiological outcomes under the three paths are shown in Figures 2-4 for policy paths (A), (B), 

and (C) respectively. In each figure, the left panel shows the rates of those currently infected and 

symptomatic (in the notation above, Pr[Symptomatict, It]) and of the ever-infected (currently infected + 

recovered) for the low value of the asymptomatic rate (0.3), and the right panel shows these paths for the 

high value (0.86). 

 

The outcomes for the two “flattening the curve” scenarios depend strongly on the (unknown) 

asymptomatic rate. The least restrictive policy (A) flattens the curve effectively if the asymptomatic rate 

3 The no-policy values of R0 in these figures is computed for πa = 0.3. 
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is high, and herd immunity is achieved my mid-summer. If the asymptomatic rate is low, the least 

restrictive policy results in very high infected symptomatic rates that would overwhelm the health system. 

The protracted severe limitations policy (B) flattens the curve under the lower asymptomatic rate, 

although the infected symptomatic rate reaches 5% in late summer. Although I do not model the 

economic costs, the economic costs of paths (A) and (B) are likely to be very different, with (B) resulting 

in high costs and a longer deeper recession.  

 

The left panel of Figure 2 and the right panel of Figure 3 represent two high-cost scenarios, the former 

costly in deaths, the latter costly in economic outcomes; avoiding either requires knowledge of the 

asymptomatic rate and the rates of infections and recoveries. 

 

The alternative path (C), essentially a total 5-week shutdown of face-to-face interaction as was done in 

Wuhan, would have the most severe immediate economic costs. Under the parameters here, this suffices 

to suppress the virus. If R0 is kept below 1 until a vaccine is developed, then the total rate of ever-infected 

in the population remains low.  

 

Figure 2. Policy path (A) with low (left) and high (right) asymptomatic rates 
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Figure 3. Policy path (B) with low (left) and high (right) asymptomatic rates 

  
 

Figure 4. Policy path (C) with low (left) and high (right) asymptomatic rates 

Note: Axis values differ from Figures 2 and 3.  

  
 

Summary 

 

Policy outcomes hinge critically on a key unknown parameter, the fraction of infected who are 

asymptomatic, and on the current rates of infected and recovered in the population. Evidence on the 

asymptomatic rate is scanty, however it could readily be estimated by randomized testing. 

 

From an economic policy design perspective, this simplified model has the virtue of summarizing the 

epidemiological effect of shutdown policies in a single parameter, the contagion parameter β. In this 

simple model, different policies that yield the same β will have the same health outcomes. However, 
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different policies might have very different economic costs. Thus, one way to frame the economics of 

shutdown policies is as finding the most efficient policies to achieve a given β, then solving for the 

optimal path of β that trades off the economic cost against the cost of excess lives lost by overwhelming 

the health care system. 
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New York City is the hot spot of the Covid-19 pandemic in the United States. 
This paper merges information on the number of tests and the number 
of infections at the New York City zip code level with demographic and 
socioeconomic information from the decennial census and the American 
Community Surveys. People residing in poor or immigrant neighbourhoods 
were less likely to be tested; but the likelihood that a test was positive was 
larger in those neighbourhoods, as well as in neighbourhoods with larger 
households or predominantly black populations. The rate of infection in 
the population depends on both the frequency of tests and on the fraction of 
positive tests among those tested. The non-randomness in testing across New 
York City neighbourhoods indicates that the observed correlation between the 
rate of infection and the socioeconomic characteristics of a community tells an 
incomplete story of how the pandemic evolved in a congested urban setting.

1	 Robert W. Scrivner Professor of Economics and Social Policy, Harvard Kennedy School. I am grateful to Hugh 
Cassidy, Daniel Hamermesh, and Gordon Hanson for helpful comments and suggestions.
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Demographic Determinants of Testing Incidence and COVID-19 Infections 
in New York City Neighborhoods 

 
George J. Borjas* 

 
1. Introduction 

The apparent difficulty in managing the COVID-19 pandemic raises a multitude of 

research questions that need to be answered in order to minimize both the human suffering and 

the economic costs. Why did hot spots arise in some cities or countries, but not in others? Is the 

pandemic disproportionately affecting particular demographic or socioeconomic groups? Can the 

destructive path of the pandemic be effectively controlled by a more careful targeting of the 

scarce testing resources? What is the net cost of the restrictions on geographic mobility, work 

arrangements, and social gatherings that are now common in countries affected by the pandemic? 

Addressing all of these questions, however, requires the availability of detailed data that would 

allow a researcher to search for systematic empirical patterns that might suggest an effective path 

towards a reduction in future costs.1  

The New York metropolitan area is currently a hot spot of the COVID-19 pandemic in 

the United States. The first COVID-19 test in the city was conducted on January 29, 2020, with 

the first positive result not confirmed until February 23, 2020. Nevertheless, by April 6, 2020, 

New York City had already identified 68,776 persons infected with the virus, and 2,738 persons 

had succumbed to the infection. 

 
* Robert W. Scrivner Professor of Economics and Social Policy, Harvard Kennedy School; Research 

Associate, National Bureau of Economic Research; and Program Coordinator, IZA Program on Labor Mobility, 
Institute for the Study of Labor. I am grateful to Hugh Cassidy, Daniel Hamermesh, and Gordon Hanson for helpful 
comments and suggestions. 

1 Economists have already begun to analyze many of the questions raised by the pandemic; see, for 
example, Baker et al (2020), Bergen, Herkenhoff, and Mongey (2020), Harris (2020, and Lang, Wang, and Yang 
(2020). 
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 Beginning on March 30, 2020, the NYC Department of Health and Mental Hygiene 

began to release detailed information on the number of tests administered and the number of 

positive results for persons residing in each of 177 zip codes, which I will roughly interpret as 

urban “neighborhoods.”2 Note, however, that the average population in a zip code in New York 

City is around 46,000 persons (so that the typical New York neighborhood actually has the 

population of a small city). This paper exploits the data to identify the demographic 

characteristics that correlate with the very different patterns in COVID-19 testing and infections 

across neighborhoods. 

Specifically, I merged the neighborhood-level counts of tests administered and positive 

results with data from both the 2010 decennial census and the 2010-2014 American Community 

Surveys (ACS). The merging allows me to paint a detailed picture of the neighborhoods where 

COVID-19 testing was more prevalent and where the number of positive cases was relatively 

high. 

 The evidence suggests that a small number of neighborhood characteristics help explain a 

relatively large fraction of the variance (over 70 percent) in positive test results (conditional on 

being tested) across New York City neighborhoods. In particular, the conditional probability of a 

positive test result is far greater for persons living in poor neighborhoods, in neighborhoods 

where large numbers of people reside together, and in neighborhoods with a large black or 

immigrant population. At the same time, however, persons residing in poor or immigrant 

neighborhoods were less likely to be tested.  

 Much of the discussion over the spread and impact of the COVID-19 epidemic focuses 

on the evolution of a single statistic: the number of infections per 100,000 persons in the 

 
2 The data file, however, does not report the number of fatalities resulting from the pandemic. 
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population. The analysis of the New York City data starkly illustrates the problem with focusing 

on this single number. The rate of infection in the population depends on two distinct factors: the 

frequency of tests in a particular area and the fraction of positive tests among those tested.  

Because the incidence of COVID-19 testing was not random across New York City 

neighborhoods, it is crucial to examine how socioeconomic characteristics correlate with each of 

the two determinants of the rate of infection. It turns out that some characteristics—for instance, 

household income—are correlated in opposite directions with the incidence of testing and with 

the likelihood that a test leads to a positive result. In the end, we might find little correlation 

between household income and infection rates, but this “zero correlation” masks the fact that 

household income is related to both the rate of testing and the likelihood that a test yields a 

positive result. Persons residing in poorer neighborhoods were less likely to be tested, but once 

the test was administered, were more likely to be afflicted with the virus. In short, the finding 

that the rate of infection in the population is uncorrelated with a particular socioeconomic 

characteristic may not provide the information that is required to understand the evolution of the 

pandemic.   

 

2. Data 

 The key data file analyzed in this paper reports the cumulative number of COVID-19 

tests administered as well as the cumulative number of positive results for each zip code in the 

City of New York.3 These data were first released on March 30, 2020 by the NYC Department 

of Health and Mental Hygiene (and have been updated since). Unless otherwise noted, the 

analysis in this paper uses the cumulative counts as of April 5, 2020. The data consist of 177 

 
3 The New York City zip codes are numbered from 10001 to 11697. 
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identifiable zip codes, with some persons being allocated to a “non-identifiable” category that is 

excluded from the empirical exercise that follows. 

It is important to emphasize that the zip code in the publicly available data refers to the 

zip code of residence for the person who received the test. For expositional convenience, I will 

use the terms “zip code” and “neighborhood” interchangeably. 

Figure 1, prepared by the New York City Department of Health, shows the geographic 

spread in infection across neighborhoods. Even a superficial look at the map suggests that many 

neighborhoods in Manhattan have had relatively few COVID-19 cases, while some 

neighborhoods in the Bronx, Brooklyn, or Queens have seen a very high case load. Some of the 

initial media reports of these data provide a detailed discussion of the pandemic in specific 

neighborhoods (Honan, 2020; Buchanan et al, 2020; and Marsh 2020). 

 The first two rows of Table 1 summarize key characteristics of the data. The cumulative 

number of persons who had been tested for COVID-19 infection in the average zip code prior to 

April 5, 2020 was 598.2, but there was a very large variation across neighborhoods in the 

incidence of testing. Around 219 persons had been tested in the neighborhood at the 10th 

percentile, and almost 5 times as many (1013) had been tested in the neighborhood at the 90th 

percentile. The table also shows a similarly large geographic dispersion in the number of persons 

who tested positive for the virus, from 101 persons in the neighborhood at the 10th percentile to 

624 persons in the neighborhood at the 90th percentile. 

 I merged the data released by the NYC Department of Health with information from 

other sources, specifically the 2010 decennial census and the 2010-2014 American Community 

Surveys (ACS). This merging allows me to obtain a relatively simple description of the 

demographic and socioeconomic characteristics for each of the 177 neighborhoods. 
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The demographic data from the 2010 decennial census at the zip code level is publicly 

available in the data archives maintained by the Census Bureau.4 The characteristics that I 

downloaded from the decennial census are: the population of the neighborhood, the fraction of 

the population that is male, the fraction of the population that is over age 60, the fraction of the 

population that is minority (i.e. Hispanic, non-Hispanic black, or non-Hispanic Asian), and the 

number of persons in the average household. Table 1 shows that all of these demographic 

characteristics vary substantially across NYC neighborhoods. For instance, the mean household 

size is 2.6 persons, but the range between the 10th and 90th percentile neighborhood goes from 

1.7 to 3.2 persons. Similarly, the range for the fraction of the neighborhood’s population that is 

black goes from 1.3 to 52.1 percent, with a mean of 16.1 percent. 

I use the neighborhood’s population to normalize the data on COVID-19 testing and 

infections. Specifically, Table 1 also reports both the number of tests and the number of 

infections per 100,000 persons. In the 10th percentile neighborhood, the incidence of testing was 

902.9 persons, while the incidence was twice as large, or 1840.6, in the 90th percentile 

neighborhood. These large geographic differences in the incidence of testing will play a role in 

the analysis that follows. 

The table also reports the rate of infection per 100,000 persons, calculated simply as the 

number of persons infected with COVID-19 divided by population (times 100,000). This number 

also differs substantially across neighborhoods, from 442.2 in the 10th percentile neighborhood to 

1107.4 in the 90th percentile neighborhood. 

 
4 The data are available at census.data.gov.  
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Finally, the table reports the percent of tests that confirmed an infection. The fraction of 

tests that had positive results was 54.0 percent in the average neighborhood, but it ranged from 

39.4 in the 10th percentile neighborhood to 64.3 percent in the 90th percentile neighborhood.  

Unfortunately, the zip code-level data available from the decennial census does not 

contain information on the income level of the neighborhood or on other socioeconomic 

variables that might be relevant in understanding the spread of the pandemic. I used data from 

the merged 2010-2014 ACS to obtain this type of additional information. In particular, I used the 

ACS to calculate the mean household income of the neighborhood and the fraction of the 

neighborhood’s population that is foreign-born.5 

Table 1 also reports the summary statistics for these two additional variables. As with the 

data drawn from the decennial census, there is a great deal of dispersion across neighborhoods in 

these characteristics. For example, the range for mean household income goes from $46,800 in 

the 10th percentile to $164,000 in the 90th percentile, and the range for the fraction of the 

neighborhood’s population that is foreign-born goes from 19.3 to 52.5 percent. 

Let Vi be the number of persons in neighborhood i who tested positive for COVID-19, 

and let Pi be the population of the neighborhood. The fraction of persons in a neighborhood who 

tested positive (which can be easily translated into the number of persons infected with the virus 

per 100,000 people) can be written as: 

 

𝑉"
𝑃"
= %

𝑇"
𝑃"
' × %

𝑉"
𝑇"
' , (1) 

 

 
5 These data are downloadable from the usa.com website;  http://www.usa.com/rank/.  
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where Ti gives the number of residents in the neighborhood who have been tested.  

Equation (1) shows that the infection rate in the population (Vi/Pi) depends on two 

distinct ratios: (1) the rate at which persons were tested; and (2) the rate at which those who were 

tested, in fact, tested positive for the virus. Testing in the United States was very sporadic in the 

early stages of the pandemic. Even in a city as large as New York City, fewer than 1,000 persons 

had been tested by March 10, 2020, and only 110,606 persons (out of a population of 8.6 

million) had been tested by April 5, 2020.6 

Equation (1) also shows that the infection rate in the population depends on the fraction 

of tests that turn out to be positive. This variable, too, is likely to be correlated with specific 

socioeconomic characteristics (for example, there may be more infections among people living 

in neighborhoods where large families cluster together). 

It is unclear at the outset whether a given socioeconomic variable x should be similarly 

correlated (even in sign) with each of the two ratios in the right-hand-side of equation (1). As a 

result, the correlation between the population infection rate (Vi/Pi) and x may confound the two 

very different roles that x might be playing in the pandemic.  

 Let me conclude with an important caveat. The demographic and socioeconomic 

characteristics chosen to describe the neighborhood were selected not only because they tend to 

be the usual suspects used in many studies in the social science literature, but also because it is 

unlikely that they affected the evolution of test frequency and testing results during the month of 

March 2020.  

 
6 The cumulative number of tests for March 10 was reported in the testing.csv file prepared by the NYC 

Department of Health and available at https://github.com/nychealth/coronavirus-data. The file was downloaded on 
April 2, 2020, but had disappeared from the website by April 5. 
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It is not difficult to find neighborhood characteristics that likely affected the allocation of 

testing resources as the pandemic took hold in the city. By the middle of March 2020, for 

instance, it became well known that the large Hassidic community in Brooklyn was particularly 

hard hit by the virus (Stack and Schweber, 2020; Sales, 2020). The Hassidic population in New 

York City is concentrated in a small number of neighborhoods (Gallagher, 2009).7 After learning 

of this specific problem, NYC health officials might have responded to the outbreak by 

reallocating resources to increase the incidence of testing in the affected neighborhoods. Such a 

behavioral response would lead to an increased number of tests in Hassidic neighborhoods, with 

a likelihood that many of those tests were positive. 

A positive correlation between, say, the fraction of a neighborhood’s population that is 

Hassidic and the fraction of positive COVID-19 tests would then measure a response to an actual 

outbreak rather than a pre-existing “predisposition.” The socioeconomic variables chosen for the 

analysis and summarized in Table 1 were, in part, chosen because they tend to avoid this 

endogeneity problem.8 

 

3. Descriptive evidence 

 Before proceeding to the regression analysis, it is instructive to illustrate graphically the 

simple correlation between some of the neighborhood characteristics and both the incidence of 

testing and the likelihood of a positive test result. Figure 2, for example, presents scatter 

diagrams that show how differences in the mean household income of the neighborhood’s 

 
7 The main zip codes are 11211, 11218, 11219, 11204, and 11230, which include the Williamsburg and 

Borough Park sections of Brooklyn. 
8 One potential exception is the variable that gives the fraction of the population that is over age 60. As the 

pandemic progressed, it became apparent that the elderly were severely affected by the illness and testing resources 
may have been reallocated to neighborhoods that had a disproportionately large number of older persons.  
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population relate to: (a) the incidence of testing per 100,000 persons (Vi/Pi ´ 100,000); (b) the 

percent of tests that confirm an infection (Vi/Ti ´ 100); and (c) the number of infections per 

100,000 persons (Vi/Pi ´ 100,000). 

Panel A of the figure shows the relationship between the incidence of testing and mean 

household income (in logs). It is obvious that there is one outlying zip code where residents were 

far more likely to be tested. The neighborhood with the largest (normalized) number of tests, 

with about 4,400 tests per 100,000 persons, has zip code 10018. This zip code roughly 

encompasses the west side of midtown Manhattan between 34th and 42nd streets, from 5th Avenue 

to the Hudson River.9 

The graph suggests a positive relation between the incidence of testing and household 

income in the neighborhood. In other words, persons residing in wealthier neighborhoods were 

more likely to be tested than persons residing in poorer neighborhoods. 

The middle panel of Figure 2 shows the relation between the probability that a test yields 

a positive result and mean household income. It is obvious that this probability is far higher in 

poorer neighborhoods. The figure suggests that the fraction of tests that reveal an existing 

infection is around 60 percent in neighborhoods at the 10th percentile of the income distribution 

(where the log of household income is 10.8), but the statistic falls to about 45 percent in 

neighborhoods that are in the 90th percentile (where the log of household income is 12.0). 

 
9 It is difficult to understand why the incidence of testing was so high in the west midtown area. There are 

no media reports suggesting the existence of a notable COVID-19 outbreak in this neighborhood. The second 
highest incidence of testing, with 2,537 tests per 100,000 persons, has zip code 11370, and it encompasses the 
Elmhurst area of Queens. That area, however, became notorious in mid-March because of the large number of virus-
related admissions and fatalities at the Elmhurst Hospital Center (Rothfeld et al, 2020; Russell, 2020). It seems 
plausible that health officials might have responded to the crisis by increasing testing in that neighborhood in the last 
half of March, “artificially” inflating the testing incidence. 
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The bottom panel of the figure shows the net impact of these two conflicting correlations 

by linking the incidence of COVID-19 infection in the population and household income. 

Although the resulting correlation is negative, it is visually evident that it is relatively weak 

simply because persons residing in poorer neighborhoods were less likely to be tested and hence 

have a smaller chance of showing up in the infection counts. 

Figure 3 provides an analogous summary of the correlation between the average 

household size in the neighborhood and the various outcomes. Panel A reveals that the incidence 

of testing was essentially independent of average family size. This allocation of testing resources 

might seem questionable given the very strong positive correlation between household size and 

the likelihood that a test yields a positive result illustrated in Panel B of the figure. In 

neighborhoods where small households are prevalent, fewer than 50 percent of the tests came 

back positive. In neighborhoods with larger households, over 60 percent of the tests came back 

positive. 

The combination of these two effects attenuates the relationship illustrated in Panel C of 

the figure. There is a weaker positive correlation between the incidence of infection in the 

population and household size simply because testing was not particularly common in the 

neighborhoods where large families cluster. 

Panel A of Figure 4 shows the relationship between the incidence of testing and the 

minority composition of the neighborhood, defined as the fraction of the neighborhood’s 

population that is either Hispanic, non-Hispanic black, or non-Hispanic Asian. The graph 

suggests a negative relation between the incidence of testing and the percent of the 

neighborhood’s population that is minority. In other words, persons residing in predominantly 
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minority neighborhoods were less likely to be tested than persons residing in mainly white 

neighborhoods.10 

The middle panel of Figure 4 shows the relation between the probability that a test yields 

a positive result and the minority composition of the neighborhood. It is obvious that this 

probability is far higher in minority neighborhoods. The figure suggests that the fraction of tests 

that reveal an existing infection is around 45 percent in neighborhoods where 20 percent of the 

population is minority and increases to nearly 60 percent in neighborhoods that are over 60 

percent minority. 

The bottom panel of the figure shows the net impact of these two conflicting correlations 

by linking the incidence of COVID-19 infection in the population (per 100,000 persons) and the 

percent minority variable. Although the resulting correlation is positive, it is relatively weak 

simply because persons residing in minority neighborhoods were less likely to be tested and 

hence have a smaller chance of showing up in the infection counts. 

Finally, Figure 5 illustrates the relationship between the outcome variables and the 

percent of the neighborhood’s population that is foreign-born. The top panel of the figure reveals 

that persons residing in immigrant neighborhoods were less likely to be tested. The middle panel, 

however, shows a strong positive relation between the probability that a test is positive and 

percent immigrant. The combination of these two correlations summarized in Panel C leads to a 

weaker positive relation between the “immigrant-ness” of a neighborhood and the incidence of 

COVID-19. 

 
10 One important caveat: The regression analysis presented below conducts a more detailed examination of 

this correlation and shows that the negative correlation between the incidence of testing and the racial composition 
of the neighborhood is driven by Asian neighborhoods. 
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As this graphical description of the data suggest, it is crucial to examine the distinct 

channels through which any socioeconomic or demographic variable can affect the incidence of 

testing and the likelihood that any given test yields a positive result. At least in the early stage of 

the pandemic in New York City, testing resources were not randomly allocated across 

neighborhoods, contaminating the correlation between any socioeconomic characteristic and the 

(observed) population incidence of COVID-19 infection. The next section will estimate 

regression models that confirm many of the implications of these scatter diagrams even after 

controlling for the role played by other neighborhood characteristics. 

 

4. Regression Results 

 Table 2 reports the main regressions that relate each of the three key outcome variables to 

the set of socioeconomic characteristics introduced earlier. The regressions are estimated using a 

grouped logit estimator. For expositional convenience, Table 2 reports the marginal effect of 

each of the regressors, where the marginal effect is defined as the percentage change in the 

number of “successes” in the dependent variable.11 

 The regressions confirm the insight emphasized in the previous section—that focusing 

solely on the incidence of COVID-19 in the population masks a lot of what is actually going on 

in New York City. Consider, for example, the impact of mean household income (introduced in 

logs in the regressions). The last column of the table shows that although the relative number of 

infections in the population is positively related to household income, after holding constant 

other neighborhood characteristics, the coefficient is not very significant. This finding would 

 
11 Specifically, the regressions are estimated using the glogit command in STATA, and the marginal 

effects are estimated using the eydx option. 

C
ov

id
 E

co
no

m
ic

s 
3,

 1
0 

A
pr

il 
20

20
: 1

2-
39



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

 14 

lead to the inference that COVID-19 infections affected poor and wealthy NYC neighborhoods 

in roughly the same way. 

However, the regression reported in the first column of the table documents that persons 

residing in wealthy neighborhoods were tested at much higher rates than persons residing in poor 

neighborhoods. The 90-10 gap in log household income is about 1.2 log points. This implies that 

the number of tests administered to persons residing in the wealthier neighborhoods was about 

21.6 percent greater than the number of tests administered to persons residing in the poorer 

neighborhoods (for a given population size). 

At the same time, however, the persons who were tested and who resided in the wealthy 

neighborhoods were less likely to test positive for the virus.12 The number of positive test results 

declines by about 5.5 percent when comparing the 90th percentile neighborhood with the 10th 

percentile neighborhood (for a given number of tests administered). In short, the analysis of the 

distinct effects of household wealth on the incidence of testing and on the conditional probability 

of testing positive (holding constant other neighborhood characteristics) provides a different 

picture than the one implied by the weaker positive correlation between household income and 

the incidence of COVID-19 infections in the population. 

 It is important to note that the correlation between household income and the various 

outcome variables reported in Table 2 can be interpreted in different ways, and that the currently 

available data do not allow us to distinguish among alternative explanations. For instance, the 

regressions indicate that residents from wealthier NYC neighborhoods were tested relatively 

more often than their counterparts from poorer neighborhoods. But why did this difference arise? 

 
12 It is worth noting that the R-squared of the grouped logit regression on the conditional probability of a 

positive test result is quite high, exceeding 0.7. A small number of neighborhood characteristics do a remarkably 
good job of explaining the geographic dispersion in this probability. 
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It is possible that the scarce testing resources were disproportionately allocated to 

wealthier neighborhoods. But it is also possible that persons residing in the wealthier 

neighborhoods might have had better information networks or could more easily afford to obtain 

tests elsewhere in the city. It would be important to resolve this puzzle, but the publicly available 

data released by the NYC Department of Health reports only the zip code of residence for the 

persons tested and does not report the zip code where the test was administered. 

The regression in Table 2 shows that household size is an important determinant of the 

various outcome variables, and in this case the effects on the two components of the infection 

rate work in the same direction, so that the correlation between the incidence of infection in the 

population and household size is very strong. In particular, persons residing in neighborhoods 

where large families were cluster were far more likely to be tested. Similarly, given that a test 

was administered, infections were much more likely to be detected in those neighborhoods. This 

is not surprising, of course, as the grouping together of a larger number of people raises the risk 

of exposure to COVID-19. The fact that the two effects work in the same direction leads to a 

very strong correlation between household size and the incidence of infections in the population: 

One additional person in the household increases the number of infections by about 46.4 

percent.13 

Table 2 also shows that predominantly male neighborhoods were more likely to be 

affected by COVID-19 infections. This finding, however, is solely by the fact that those 

neighborhoods were tested more intensively. The relative number of positive cases among 

persons who were tested is independent of the gender composition of the neighborhood’s 

 
13 Although this may seem implausibly large, it is consistent with the raw data illustrated in Panel C of 

Figure 3. The figure suggests that an increase in household size from 1.5 to 2.5 increases the number of infections 
per 100,000 persons from about 500 to about 750, a 50 percent increase. 
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population. There is a similar pattern in the correlation between infections and the percent of the 

neighborhood’s population that is over age 60. Persons residing in these neighborhoods were 

also far more likely to be tested, but the outcome of the test was independent of the age 

composition of the neighborhood. 

The regressions examine the link between minority neighborhoods and COVID-19 

infections in more detail than the graphical analysis presented in the previous section. In 

particular, the regression introduces a vector of variables measuring the percent of the 

neighborhood’s population that belongs to each of the three main ethnic/racial groups. The 

analysis reveals striking differences across the groups. 

Persons residing in neighborhoods with a predominantly black or, to a lesser extent, 

Hispanic population were more likely to be tested. In the case of black neighborhoods, these tests 

were also more likely to result in the detection of an infection. As a result, there is a strong 

positive correlation between the incidence of COVID-19 infections and the percent black (and, to 

a lesser extent, percent Hispanic) variables. 

The regression also shows, however, that the sign of these correlations is reversed for 

Asian neighborhoods. Persons residing in those neighborhoods were less likely to be tested. 

Once tested, the tests were less likely to come back positive. As a result, the incidence of 

COVID-19 infections among persons residing in predominantly Asian neighborhoods was far 

lower than for persons residing in other types of neighborhoods. 

Given the geographic origin of the COVID-19 pandemic in Wuhan, China, the results 

regarding the incidence of testing and frequency of positive test results in Asian neighborhoods 

are unexpected. Note, however, that 60 percent of Asian immigrants in the city were not born in 

China. Nevertheless, it would be interesting to uncover why the spread of the virus in 
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neighborhoods with a large Asian population behaved in different ways than the spread in black 

or Hispanic (or white) neighborhoods.  

Finally, New York City has long been an urban area that attracts very large numbers of 

immigrants. The regression reported in the last column of Table 2 indicates that the “immigrant-

ness” of the neighborhood’s population is uncorrelated with the incidence of an infection in the 

population (holding the other neighborhood characteristics constant). In other words, the number 

of infections per 100,000 persons was essentially the same for persons living in immigrant or in 

“native” neighborhoods. However, this result arises because persons in immigrant neighborhoods 

were less likely to be tested, and far more likely to test positive once the test was administered. 

The evidence regarding the correlation between immigrant neighborhoods and CUVID-19 

infections in New York City, therefore, again reveals how the nonrandom allocation of testing 

resources in the city affects the perception of which groups are disproportionately affected by the 

virus. 

I should note that the regression analysis summarized in Table 2 only examines the role 

of a small number of variables that hope to capture key aspects of how the COVID-19 pandemic 

affected the various neighborhoods of New York City. By focusing on a small number of 

regressors, the analysis avoids the problem of multicollinearity that a kitchen-sink approach 

would introduce, particularly given the limited nature of the sample (a single cross-section of 

outcomes summarizing the cumulative impact of the pandemic on NYC as of April 5, 2020) and 

the relatively small number of observations. 

Nevertheless, the regressions ignored the obvious fact that the various neighborhoods are 

located in one of the five distinct boroughs that make up the City of New York (Manhattan, the 

Bronx, Brooklyn, Queens, and Staten Island). Figure 1 suggests that there may be noticeable 
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differences across the five boroughs in the incidence of COVID-19 infections per 100,000 

persons (which, of course, partly reflect the different kinds of neighborhoods that compose the 

various boroughs). 

 Table 3 re-estimated the regressions after adding a set of borough fixed effects. The 

results tend to resemble those reported in Table 2, although many of the coefficients are not 

statistically significant. For example, the correlation between household income and the various 

outcome variables is weaker once the regression controls for borough of residence. This is not 

surprising, as it is well known that Manhattan has a far higher level of household income than the 

other boroughs, so that the Manhattan fixed effect attenuates the impact of household income on 

the incidence of testing and on the likelihood of positive test results.14 Nevertheless, the 

regressions in Table 3 suggest that—even within boroughs—the population in the neighborhoods 

that were predominantly black or Hispanic, or had larger households, or had a large immigrant 

population, are more likely to test positive once tested. Similarly, the population in the 

neighborhoods where large households cluster or are predominantly male—even within a 

borough—are still more likely to be tested.15 

 

6. Summary 

 This paper documents the characteristics of New York City neighborhoods that were 

most affected by the COVID-19 pandemic. It uses data compiled by the New York City 

 
14 Manhattan’s average household income is $125,900, as compared to between $48,700 and $90,300 for 

the other four boroughs. 
15 The coefficients of the borough fixed effects in Table 3 suggest the presence of borough-wide impacts 

that would be interesting to pursue in further research, as they may provide insight into the evolution of the 
pandemic. For example, persons residing in Brooklyn had a relatively lower incidence of testing than persons from 
other boroughs, while persons residing in the Bronx had a relatively higher incidence. In addition, the likelihood a 
test yielded a positive result was far higher in Brooklyn and Queens than in the other boroughs. 
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Department of Health and Mental Hygiene that reports the number of COVID-19 tests 

administered and the number of persons infected at the level of a zip code. I merged these 

administrative counts with data from the 2010 decennial census and the 2010-2014 American 

Community Surveys to describe the neighborhoods where COVID-19 testing was relatively 

more common and where the number of positive test results was relatively high. 

 The probability of a positive test result (conditional on testing) is larger in poorer 

neighborhoods, in neighborhoods where large numbers of people reside together, and in 

neighborhoods with a large black or immigrant population. At the same time, however, persons 

residing in poorer or immigrant neighborhoods were less likely to be tested.  

 The rate of infection in a given population (i.e., the number of infected persons divided 

by the size of the population) depends on two separate factors: the frequency of tests and the 

fraction of positive tests among those tested. The New York City experience suggests that the net 

correlation between socioeconomic characteristics and the rate of infection sometimes captures 

the net impact of perhaps two conflicting forces. As a result, an understanding of which types of 

neighborhoods are disproportionately affected by the pandemic requires an examination of how 

socioeconomic characteristics correlate with each of the two determinants of the rate of infection 

in the population. 
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Figure 1. Covid-19 cases in New York City, by zip code 
(as of April 3, 2020) 

 

 
 

Source: Map prepared by the NYC Department of Health; 
https://www1.nyc.gov/assets/doh/downloads/pdf/imm/covid-19-cases-by-zip-04032020-1.pdf.  
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Figure 2. Household income and COVID-19 
 

A. Incidence of testing (per 100,000 persons) 

 
B. Percent of tests that are positive 

 
C. Incidence of infection in population (per 100,000 persons) 

 
 
Notes: The income variable gives the household income for the average household in the zip code. See the text for 
details on the construction of the variables. 
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Figure 3. Household size and COVID-19 
 

A. Incidence of testing (per 100,000 persons) 

 
B. Percent of tests that are positive 

 
C. Incidence of infection in population (per 100,000 persons) 

 
 
Notes: The household size variable gives the number of persons in the average household. See the text for details on 
the construction of the variables. 
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Figure 4. Minority neighborhoods and COVID-19 
 

A. Incidence of testing (per 100,000 persons) 

 
B. Percent of tests that are positive 

 
C. Incidence of infection in population (per 100,000 persons) 

 
 
Notes: The percent minority variable gives the fraction of the zip code’s population that is either Hispanic, non-
Hispanic black, or non-Hispanic Asian. See the text for details on the construction of the variables. 
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Figure 5. Immigrant neighborhoods and COVID-19 
 

A. Incidence of testing (per 100,000 persons) 

 
B. Percent of tests that are positive 

 
C. Incidence of infection in population (per 100,000 persons) 

 
 
Notes: The percent immigrant variable gives the fraction of the zip code’s population that is foreign-born. See the 
text for details on the construction of the variables. 
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Table 1. Summary statistics 

 
 
Variable: 

 
Mean 

10th 
percentile 

 
Median 

90th 
percentile 

Number of tests 598.2 219.0 515.0 1013.0 
Number of positive tests 337.9 101.0 274.0 624.0 
Population of zip code (in 1000s) 46.1 14.0 41.0 85.9 
Number of tests per 100,000 persons 1362.1 902.9 1296.2 1840.6 
No. of positive tests per 100,000 persons 740.3 442.2 692.7 1107.4 
Percent of tests that are positive 54.0 39.4 54.9 64.3 
Average household income (in 1000s) 90.4 46.8 74.0 164.0 
Size of household 2.6 1.7 2.7 3.2 
Percent male 47.7 44.7 47.5 50.3 
Percent age ≥ 60 17.5 11.4 16.8 25.3 
Percent black 16.1 1.3 6.4 52.1 
Percent Hispanic 18.8 5.6 13.1 44.3 
Percent Asian 10.5 1.1 6.9 25.1 
Percent immigrant 35.1 19.3 34.0 52.5 

 
Notes: The sample has 177 observations. The data on the number of COVID-19 tests and the number of positive 
results were compiled by the New York City Department of Health and Mental Hygiene. The counts are cumulative 
to April 5, 2020. The data for the zip code’s population, the average size of the household, the percent male, and the 
percent in the various ethnic/racial groups are drawn from the 2010 decennial census files. The variables measuring 
household income and the percent of the population that is immigrant are drawn from the pooled 2010-2014 
American Community Surveys.  
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Table 2. Correlates of COVID-19 testing incidence and infections 
 

 Number of tests 
relative to the 

population 

Number of infections 
relative to number of 

tests conducted 

Number of 
infections relative 
to the population 

Log mean household income 0.182 -0.046 0.107 
 (0.066) (0.028) (0.077) 
Average household size 0.284 0.179 0.464 
 (0.055) (0.023) (0.064) 
Percent male 0.038 0.002 0.043 
 (0.010) (0.004) (0.012) 
Percent age ≥ 60 0.029 -0.000 0.031 
 (0.005) (0.002) (0.006) 
Percent black 0.002 0.002 0.004 
 (0.001) (0.001) (0.002) 
Percent Hispanic 0.002 0.000 0.003 
 (0.002) (0.001) (0.002) 
Percent Asian -0.008 -0.001 -0.009 
 (0.003) (0.001) (0.003) 
Percent immigrant -0.003 0.004 -0.000 
 (0.002) (0.001) (0.002) 
    
R-squared 0.331 0.724 0.448 

 
Notes: Standard errors in parentheses. All regressions have 177 observations and are estimated using the command 
glogit in STATA. This procedure estimates grouped logit regression models using weighted least squares. The 
coefficients report the marginal effect of the independent variable in percentage terms, specifically giving the 
percent change in the number of “successful” cases (i.e., the numerator of the dependent variable) resulting from a 
one-unit change in the independent variable. 
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Table 3. Correlates of COVID-19 testing incidence and infections, 
including borough fixed effects 

 
 Number of tests 

relative to the 
population 

Number of infections 
relative to number of 

tests conducted 

Number of 
infections relative 
to the population 

Log mean household income 0.130 -0.040 0.061 
 (0.069) (0.030) (0.085) 
Average household size 0.254 0.154 0.390 
 (0.058) (0.025) (0.070) 
Percent male 0.043 -0.002 0.045 
 (0.009) (0.004) (0.011) 
Percent age ≥ 60 0.021 -0.000 0.023 
 (0.005) (0.002) (0.006) 
Percent black 0.001 0.002 0.003 
 (0.001) (0.001) (0.002) 
Percent Hispanic -0.005 0.002 -0.003 
 (0.002) (0.001) (0.003) 
Percent Asian -0.012 -0.001 -0.013 
 (0.002) (0.001) (0.003) 
Percent immigrant -0.000 0.002 0.001 
 (0.002) (0.001) (0.002) 
Manhattan   --- 
Bronx 0.228 0.005 0.243 
 (0.064) (0.0302 (0.079) 
Queens 0.060 0.121 0.188 
 (0.062) (0.027) (0.076) 
Brooklyn -0.178 0.097 -0.079 
 (0.066) (0.030) (0.082) 
Staten Island -0.035 -0.014 -0.024 
 (0.088) (0.041) (0.111) 
    
R-squared 0.517 0.778 0.567 

 
Notes: Standard errors in parentheses. All regressions have 177 observations and are estimated using the command 
glogit in STATA. This procedure estimates grouped logit regression models using weighted least squares. The 
coefficients report the marginal effect of the independent variable in percentage terms, specifically giving the 
percent change in the number of “successful” cases (i.e., the numerator of the dependent variable) resulting from a 
one-unit change in the independent variable. 
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In this paper, we conduct a comprehensive review of different economic policy 
measures adopted by 166 countries as a response to the COVID-19 pandemic 
and create a large database including fiscal, monetary, and exchange rate 
measures. Furthermore, using principle component analysis (PCA), we 
construct a COVID-19 Economic Stimulus Index (CESI) that combines all 
adopted policy measures. This index standardises economic responses taken 
by governments and allows us to study cross-country differences in policies. 
Finally, using simple cross-country OLS regressions we report that the median 
age of the population, the number of hospital beds per-capita, GDP per-capita, 
and the number of total cases are all significantly associated with the extent of 
countries’ economic policy responses.

1	 Lecturer in Discipline, Columbia University.
2	 Assistant Professor, Sungkyunkwan University.
3	 Professor at Eskişehir Osmangazi University
4	 Our dataset will be regularly updated every week and the latest version is available at www.ceyhunelgin.com.

C
ov

id
 E

co
no

m
ic

s 
3,

 1
0 

A
pr

il 
20

20
: 4

0-
53



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

1 Introduction

The coronavirus (COVID-19) outbreak emerged in Wuhan, China in December of 2019 and

still persists globally. The COVID-19 pandemic has spread to 199 countries and territories

causing 777,798 cases and 37,272 deaths as of March 31, 2020. (Roser, Ritchie, and Ortiz-

Ospina, 2020). In addition to human suffering and loss of lives, the outbreak generated a

major global economic downturn. The world’s largest economies (G7 and China) are among

the ones that have been most affected by the pandemic (Baldwin and Weder di Mauro, 2020).

The COVID-19 pandemic has direct negative effects on the economy in several different

ways. To name a few, infected workers who are isolated or hospitalized cannot join the work-

force, which has several demand and supply-side implications. Furthermore, the psycholog-

ical effect of the pandemic leads to withdrawal from economic activity by agents who prefers

to adopt “wait and see” approach.

To decrease the transmission rate of COVID-19 and to reduce burden on healthcare sys-

tems, governments have adopted a wide range of stringent public health measures including

school and factory closures, travel restrictions, and city lockdowns (Atkeson, 2020). These

measures have been effective in slowing down the growth of new infections, as seen in the

cases of Singapore and Hong Kong (Anderson et al. 2020). However, these non-pharmaceutical

measures also distort economic activity by limiting human mobility and business operations

(Eichenbaum, Rebelo, and Trabandt, 2020). Specifically, the COVID-19 pandemic and associ-

ated public health controls have disrupted supply chains and diminished activity in manufac-

turing and service sectors, which in turn led to increased layoffs. The stock markets crashed

worldwide and the number of unemployment claims rose to unprecedented levels.

To mitigate the negative effects of public health controls on the economy and to sustain

public welfare, governments adopted economic packages including fiscal, monetary, and fi-

nancial policy measures (Gourinchas, 2020). These economic measures targeting households,

firms, health systems and banks vary across countries in breadth and scope (Weder di Mauro,

2020).

Monetary polices adopted by countries usually consist of liquidity support to banks (IMF,

2020). Typical fiscal policies include transfers to households and businesses, extension of

social safety benefits, and funds for the healthcare system. For example, South Korea in-

troduced cash transfers for quarantined individuals, consumption coupons for low-income

households, and wage and rent support for small businesses. Germany expanded access to

short-term work subsidy, increased childcare benefits for low-income parents, and provided

grants to small business owners and self-employed persons who were affected by the out-

break. United Kingdom provided funding for the National Health Service, introduced mea-

sures to support businesses including property tax holidays, direct grants for small firms, and
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compensation for sick pay leave, and strengthened the social safety net to support vulnerable

people.

In this paper, we conduct a comprehensive review of different economic policy measures

adopted by 166 countries as a response to COVID-19 pandemic and create a large database

including fiscal, monetary and exchange rate measures. Next, using the principle compo-

nent analysis (PCA), we construct a COVID-19 Economic Stimulus Index (CESI) that com-

bines all adopted fiscal, monetary, and exchange rate measures. This index standardizes the

economic responses taken by governments, thus allows to study cross-country differences in

policies. We further investigate to what extent countries’ economic responses are shaped by

several country characteristics, pandemic-related variables and public health measures (Cor-

reia, Luck, and Verner, 2020). Our findings show that the median age of the population, the

number of hospital beds per-capita, GDP per-capita and the number of total cases are signifi-

cantly associated with the extent of countries’ economics policy responses.

The rest of the paper is organized as follows: The next section includes a description of

our data sources as well as a short characterization of the PCA. The third section presents our

results. Finally, in the last section we conclude.

2 Data and Methodology

2.1 Data Sources

To construct a comprehensive database of countries’ policy measures, we used the informa-

tion provided by the International Monetary Fund (IMF COVID-19 Policy Tracker, 2020). To

improve data validity, we cross-checked this information using different sources. When the re-

ported information was not up-to-date, we replaced it with most recent information gathered

from various sources such as news channels and government websites. The current version of

our dataset uses all available information by March 31st, 2020.

The economic policy package database we created includes six policy variables classified

under three categories. These categories are, fiscal policy, monetary policy and balance of

payment/ exchange rate policy. Fiscal policy package includes all the adopted fiscal measures

and is coded as a percentage of GDP. The monetary policy category includes three different

variables: 1) Interest rate cut1 by the monetary policy authority (coded as a percentage of

the ongoing rate on February 1st, 2020), 2) The size of the macro-financial package (coded as

a percentage of GDP), and 3) Other monetary policy measures (coded as a dummy variable

taking the value of 1 if there are such measures and 0, otherwise). Finally, the balance of

payment (BoP) and exchange rate policy category includes two variables. The first one reports

1Whenever possible we used the rate cut in the policy rate. When there are multiple rate cuts, we calculated an
arithmetic average of all rate cuts.
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specific BoP measures coded as a percentage of GDP and the second one is a dummy variable

taking the value of 1 if there are other reported measures and 0, otherwise.

In addition to economic policy measures, we gathered data on up-to-date public health

measures and pandemic-related variables using different sources on the Internet. This data

include countries’ 2019 median age and COVID-19 infection rate (defined by the ratio of to-

tal COVID-19 cases to population). Moreover, data on hospital beds (per 1,000 people) and

current health expenditures (as a percentage of GDP) are obtained from the World Bank. Fi-

nally, we use the recently reported government response stringency index of Hale and Webster

(2020) as an additional explanatory variable in our analyses.

2.2 Developing the COVID-19 Economic Stimulus Index (CESI)

There are several different methodologies used for index development and each has different

advantages and disadvantages. In this paper, we use the PCA2 that is one of the most fre-

quently used method for index development. Specifically, the PCA helps reduce the number

of variables in an analysis by describing a series of uncorrelated linear combinations of the

variables that contain most of the variance. Moreover, the eigenvectors associated with the

PCA give significant information about the different variables used to create the index. We

report the principle components as well as the eigenvalues and the proportion of the variance

explained in Table A.4 in the appendix3. Depending on the PCA, we simply use all six pol-

icy variables in our dataset to create a composite index as a predicted variable with the fiscal

policy stimulus and interest rate cut having the largest weights in the overall index.

3 Results

Table 1 reports descriptive summary statistics of all economic policy variables as well as the

COVID-19 Economic Stimulus Index (CESI)constructed using the PCA. The whole data series

are reported in Tables A.1 to A.3 in the Appendix. In Figure 1, we illustrate the histogram of

the CESI and the associated fitted kernel and normal distributions. Accordingly, the index has

a right-skewed distribution, which is also apparent in Figures A.1 and A.2. This is largely be-

cause there are several countries with significant interest rate cuts and fiscal policy packages

increasing the mean; however, at the same time a large number of countries also have not yet

2PCA originated from the works of Pearson (1901) and Hotelling (1933). For many different applications, see
Rencherand Christensen, 2012; Li et. al., 2019; Kumar and Anbanandam, 2019; Deutsch and Beinker, 2019; Bala
et. al., 2019; Obeng-Ahenkora and Danso, 2020.

3The index that comes out of the PCA analysis is satisfactory in explaining the overall variance with more than two
component and also satisfies other desirable criteria needed in a PCA analysis. Nevertheless, later, we are planning
to use several other methods such as the structural equation modelling or factor analysis to supplement the PCA.
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Table 1: Summary Statistics of the Dataset

Mean Median Std. Dev. Min Max

COVID-19 Economic Stimulus Index(CESI) 0.00 -0.31 1.28 -4.25 4.85
Fiscal Policy Stimulus (%) 2.09 0.48 3.60 -7.20 17.80
Interest Rate Cut (%) 11.63 0.00 21.47 -29.73 100.00
Macro-Financial Package (% of GDP) 1.87 0.00 4.02 0.00 26.00
Other Monetary Measures(0-1 dummy) 0.85 1.00 0.36 0.00 1.00
BoP Measures (% GDP) 0.10 0.00 0.58 0.00 6.00
Other BoP Measure (0-1 dummy) 0.19 0.00 0.40 0.00 1.00

implemented any stimulus packages. This is also apparent in the level of standard deviations,

which exhibits a sizable amount of variation across countries.

Figure 1: The COVID-19 Economic Stimulus Index (CESI): Histogram and Cumulative
Distribution

Next, we conduct some simple cross-country regressions with our stimulus index as the

dependent variable and country characteristics, several public health measures as well as the

real GDP per-capita as independent variables. We report the results of six regression analyses

in Table 2.

In the first regression, we regress the CESI score on the median age of population. The

results show that the median age has a significant positive relationship with the economic

responses, indicating that countries with older populations introduced larger stimulus pack-
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Table 2: Cross-Country OLS Regressions

Dep. Var. CESI CESI CESI CESI CESI CESI CESI

Median Age 0.07* 0.10* 0.09* 0.09* 0.06* 0.05* 0.05*
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Hospital Beds (per-capita) -0.15* -0.13* -0.12** -0.11* -0.11* -0.11*
(0.04) (0.04) (0.04) (0.06) (0.04) (0.04)

Infection Rate (%) 546.25* 224.83 -69.56 -149.34 -151.30
(211.49) (237.44) (196.50) (220.96) (225.97)

Stringency Index 0.004
(0.006)

GDP per-capita (000 USD) 0.03* 0.03* 0.03*
(0.001) (0.001) (0.001)

Total Cases 0.007** 0.008**
(0.003) (0.004)

Health Expenditures (% GDP) -0.03
(0.04)

R-squared 0.27 0.31 0.34 0.30 0.43 0.43 0.43
Observations 146 146 143 69 140 140 139
F-Test 0.00 0.00 0.00 0.00 0.00 0.00 0.00

All regressions include a constant. Robust standard errors are reported in parentheses. *, **, *** denote 1, 5 and 10%
confidence levels, respectively.

ages. It is important to note that the median age is significantly and positively associated with

the level of economic response in a consistent manner throughout all regression models.

In the second regression, we included the number of hospital beds per-capita into the

model, which is significantly and negatively associated with the size of the economic stim-

ulus. After controlling for other variables in the following regressions, the number of beds per

capita consistently remains negatively associated with the size of the economic stimulus. This

result implies that countries where the number of beds per capita is lower, more stringent

economic stimulus is adopted.

In the third regression model, we add the infection rate which refers to the ratio of total

positive cases to population. After controlling for median age and hospital beds, the infection

rate is positively associated with the economic response, indicating that countries with higher

infection rates adopted stronger economic measures.

Then, we regress the Stringency Index on the CESI score. The Stringency Index consists

of public health controls adopted by governments in response to the pandemic. The analysis

show that after controlling for median age, the number of beds, and the infection rate, the
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Stringency index does not predict the economic stimulus package. It is important to note that

due to data availability, we lose half of the sample when we introduce the Stringency Index.

Finally, in the remaining models, we introduce GDP per capita, the number of total cases,

and health expenditure. The first two of these variables are significantly associated with the

CESI score, indicating that countries with higher GDP per capita and a higher number of cases,

announced larger economic stimulus packages.

4 Conclusion

In this paper, we first introduced a large database where we quantified the economic policies

adopted by national governments throughout the global COVID-19 pandemic. Second, us-

ing PCA methodology, we developed the COVID-19 Economic Stimulus Index (CESI) which

allowed us to aggregate and standardize varying economic responses across countries. Fi-

nally, we presented some preliminary results on the predictors of governments’ economic re-

sponses. Our findings, without establishing any causality, show some significant correlations

of population characteristics, public health-related, and economic variables (e.g., GDP per

capita, health expenditures) with economic stimulus packages announced by governments.

Specifically, we find that in countries where the median age is higher (which is highly relevant

in the case of the COVID-19, as it disproportionally affects older patients), the number of hos-

pital beds per-capita is lower and GDP per-capita is higher, the stimulus is more pronounced.

In our analyses, the Stringency Index which measures countries’ public health controls

such as school closures and travel restrictions did not predict the level of economic responses.

Although we lose a significant number of cases when we introduce the Stringency Index, this

non-significant finding implies that governments’ economic responses are more motivated by

reacting to the pandemic (i.e., infection rate), rather than mitigating the negative economic

implications of public health controls.

Although our study has some limitations (e.g. endogeneity, omitted variable bias), we be-

lieve that it contributes to our understanding of the economics of the COVID-19 pandemic

mainly in two ways. First, we believe that the economic stimulus package database which will

be updated on a daily basis and the index will be helpful to other researchers while studying

the outcomes of economic responses. Secondly, our study sheds some light on the predictors

of the economic responses adopted by governments.
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A Appendix

In three tables below, we report the comprehensive database we constructed. It includes

six economic policy variables as well as the Economic Stimulus Index. Our dataset will be

regularly updated every week and the latest version is available at www.ceyhunelgin.com.

Figure A.1: Fiscal Stimulus Packages: Histogram and Cumulative Distribution

Figure A.2: Interest Rate Cuts: Histogram and Cumulative Distribution
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Table A.1: Economic Policy Packages and the CESI

Country Fiscal (% GDP) Rate Cut (%) Macro-Financial (% GDP) Other Monetary BoP (% GDP) Other BoP Stimulus Index

Afghan 0.13 0.00 0.00 0.00 0.00 0.00 -1.60
Albania 1.30 50.00 0.00 1.00 0.00 0.00 0.58
Algeria -7.20 13.57 0.00 0.00 6.00 0.00 -4.25
Angola 0.00 0.00 0.00 0.00 0.00 0.00 -1.62
Argentina 1.00 5.00 0.00 1.00 0.22 0.00 -0.35
Armenia 0.00 4.55 0.00 0.00 0.00 0.00 -1.53
Australia 9.70 0.67 4.71 1.00 0.00 0.00 1.69
Austria 17.8 0.00 7.31 1.00 0.00 0.00 3.34
Azerbaijan 1.01 11.36 0.00 1.00 0.00 1.00 -0.57
Bahamas 0.20 0.00 0.00 1.00 0.00 0.00 -0.50
Bahrain 5.30 52.27 26.00 1.00 0.00 0.00 4.85
Bangladesh 0.01 7.27 0.00 1.00 0.00 0.00 -0.40
Barbados 1.40 0.00 0.00 1.00 0.00 0.00 -0.31
Belarus 0.00 0.00 0.00 1.00 0.00 1.00 -0.94
Belgium 12.3 0.00 7.31 1.00 0.00 0.00 2.46
Belize 1.00 0.00 0.00 1.00 0.00 0.00 -0.37
Benin 0.10 0.00 0.03 1.00 0.00 0.00 -0.51
Bhutan 0.00 0.00 0.00 0.00 0.00 0.00 -1.62
Bolivia 0.46 0.00 1.18 1.00 0.00 0.00 -0.30
Bosnia 3.25 0.00 0.00 1.00 0.00 0.00 -0.01
Botswana 0.28 0.00 0.00 0.00 0.00 0.00 -1.57
Brazil 3.50 28.46 3.17 1.00 1.69 1.00 0.09
Brunei 0.21 0.00 0.00 1.00 0.00 0.00 -0.50
Bulgaria 2.00 0.00 8.60 0.00 0.00 0.00 -0.11
Burkina Faso 0.00 0.00 0.00 1.00 0.00 0.00 -0.53
Burundi 0.50 0.00 0.00 0.00 0.00 0.00 -1.54
Cabo Verde 0.00 0.00 0.00 0.00 0.00 0.00 -1.62
Cambodia 1.34 0.00 0.00 1.00 0.00 0.00 -0.32
Cameroon 0.10 0.00 0.00 1.00 0.00 0.00 -0.52
Canada 6.00 57.14 2.60 1.00 0.00 0.00 1.82
CAR 1.90 0.00 0.00 1.00 0.00 0.00 -0.23
Chad 0.23 0.00 0.00 1.00 0.00 0.00 -0.50
Chile 4.70 42.86 1.36 1.00 0.00 1.00 0.78
China 1.20 0.00 14.14 1.00 0.00 1.00 1.20
Hong Kong 5.30 57.00 0.00 1.00 0.00 0.00 1.35
Colombia 0.40 0.00 1.17 1.00 0.43 1.00 -0.84
Congo, DR 0.30 16.67 0.00 1.00 0.00 0.00 -0.18
Congo, R 0.32 0.00 0.00 1.00 0.00 0.00 -0.48
Costa Rica 0.00 44.44 0.00 1.00 0.00 1.00 -0.14
Cote Ivory 0.30 0.00 0.00 1.00 0.00 0.00 -0.49
Croatia 0.30 75.00 1.25 1.00 2.94 0.00 0.20
Cyprus 3.30 0.00 7.77 1.00 0.00 0.00 1.07
Czech 2.00 22.22 0.00 1.00 0.00 0.00 0.19
Denmark 5.30 -20.00 0.00 1.00 0.00 0.00 -0.04
Djibouti 0.00 0.00 0.00 1.00 0.00 0.00 -0.53
Ecuador 1.00 0.00 0.00 1.00 0.00 0.00 -0.37
Egypt 2.00 23.53 0.00 1.00 0.00 0.00 0.21
El Salvador 1.34 0.00 0.00 1.00 0.00 0.00 -0.32
Equit. Guinea 0.07 0.00 0.00 1.00 0.00 0.00 -0.52
Eritrea 0.00 0.00 0.00 0.00 0.00 0.00 -1.62
Estonia 7.00 0.00 7.71 1.00 0.00 0.00 1.66
Eswatini 0.14 17.88 0.00 0.00 0.00 0.00 -1.27

Fiscal stands for the fiscal policy package as a percent of GDP, Rate cut is the interest rate cut as a percent of the pre-crisis level, Macro-Financial
is the monetary stimulus package as a percent of GDP, other monetary is a dummy variable taking the value of 1 if there are other accompanying
monetary measures, BoP is the monetary intervention to control the balance of payments and the exchange rate as a percent of GDP and finally,

Other BoP is a dummy variable taking the value of 1 if there are other accompanying measures towards stabilizing BoP and exchange rate.
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Table A.2: Economic Policy Packages and the CESI

Country Fiscal (% GDP) Rate Cut (%) Macro-Financial (% GDP) Other Monetary BoP (% GDP) Other BoP Stimulus Index

Ethiopia 0.15 0.00 0.00 0.00 0.00 0.00 -1.59
Fiji 7.24 50.00 0.00 0.00 0.00 0.00 0.45
Finland 1.00 0.00 7.31 1.00 0.00 0.00 0.64
France 15.30 0.00 7.31 1.00 0.00 0.00 2.94
Gabon 0.25 0.00 0.00 1.00 0.00 0.00 -0.49
Gambia 0.60 -8.00 0.00 1.00 0.00 0.00 -0.58
Georgia 2.00 0.000 0.00 1.00 0.63 0.00 -0.39
Germany 4.80 0.00 12.49 1.00 0.00 0.00 1.96
Ghana 0.15 9.38 0.00 1.00 0.00 0.00 -0.34
Greece 5.00 0.00 7.31 1.00 0.00 0.00 1.28
Guatemala 1.57 18.18 0.00 1.00 0.00 0.00 0.05
Guinea 0.00 0.00 0.00 0.00 0.00 0.00 -1.62
Guinea Bissau 0.00 0.00 0.00 1.00 0.00 0.00 -0.53
Guyana 0.00 0.00 0.00 1.00 0.00 0.00 -0.53
Haiti 0.00 0.00 0.00 1.00 0.00 0.00 -0.53
Honduras 2.20 14.29 2.80 1.00 0.00 0.00 0.46
Hungary 0.39 0.00 1.00 1.00 0.00 0.00 -0.33
Iceland 7.80 43.18 1.00 1.00 0.30 0.00 1.55
India 0.20 0.00 1.10 1.00 0.00 1.00 -0.76
Indonesia 0.20 10.00 0.00 1.00 0.00 1.00 -0.73
Iran 0.56 0.00 0.06 1.00 0.33 1.00 -0.94
Iraq 0.01 0.00 1.00 0.00 0.00 0.00 -1.48
Ireland 2.58 0.00 7.31 1.00 0.00 0.00 0.89
Israel 1.10 0.00 3.5 1.00 0.00 1.00 -0.28
Italy 1.70 0.00 7.31 1.00 0.00 0.00 0.75
Jamaica 1.40 0.00 0.00 1.00 0.00 0.00 -0.31
Japan 4.90 0.00 0.30 1.00 0.00 0.00 0.40
Jordan 0.00 37.50 1.83 1.00 0.00 0.00 0.40
Kazakhstan 3.45 -29.73 0.00 1.00 0.00 1.00 -0.92
Kenya 0.00 15.58 0.00 1.00 0.00 0.00 -0.25
Korea 0.80 40.00 0.34 1.00 0.00 1.00 -0.04
Kosovo 0.08 0.00 0.00 1.00 0.00 0.00 -0.52
Kuwait 1.40 45.45 0.02 1.00 0.00 0.00 0.52
Kyrgyz Rep. 0.10 -17.65 0.00 1.00 0.00 1.00 -1.24
Laos 0.01 0.00 0.00 1.00 0.00 1.00 -0.94
Latvia 3.30 0.00 7.31 1.00 0.00 0.00 1.01
Lebanon 0.00 0.00 0.00 1.00 0.00 0.00 -0.53
Lesotho 0.00 16.00 0.00 1.00 0.00 0.00 -0.25
Liberia 0.00 0.00 0.00 0.00 0.00 0.00 -1.62
Lithuania 5.30 0.00 7.31 1.00 0.00 0.00 1.33
Luxemburg 15.6 0.00 7.31 1.00 0.00 0.00 2.99
Madagascar 0.03 0.00 0.30 1.00 0.00 1.00 -0.89
Malawi 0.25 0.00 0.00 0.00 0.00 0.00 -1.58
Malaysia 16.22 9.09 0.20 1.00 0.00 0.00 2.27
Maldives 2.80 0.00 0.00 1.00 0.00 1.00 -0.49
Mali 0.06 0.00 0.00 1.00 0.00 0.00 -0.52
Malta 12.3 0.00 13.31 1.00 0.00 0.00 3.28
Mauritania 0.13 25.43 0.00 1.00 0.00 0.00 -0.05
Mauritius 1.38 14.93 2.00 1.00 0.00 1.00 -0.17
Mexico 0.70 7.14 0.60 1.00 0.00 1.00 -0.62
Moldova 0.00 40.91 0.00 1.00 0.00 0.00 0.21
Mongolia 0.03 9.09 0.80 1.00 0.00 0.00 -0.25
Montenegro 0.02 0.00 0.00 1.00 0.00 1.00 -0.94
Morocco 0.84 12.5 0.00 1.00 0.00 1.00 -0.58
Mozambique 0.10 0.00 0.00 1.00 0.00 0.00 -0.52

Fiscal stands for the fiscal policy package as a percent of GDP, Rate cut is the interest rate cut as a percent of the pre-crisis level, Macro-Financial
is the monetary stimulus package as a percent of GDP, other monetary is a dummy variable taking the value of 1 if there are other accompanying
monetary measures, BoP is the monetary intervention to control the balance of payments and the exchange rate as a percent of GDP and finally,

Other BoP is a dummy variable taking the value of 1 if there are other accompanying measures towards stabilizing BoP and exchange rate.
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Table A.3: Economic Policy Packages and the CESI

Country Fiscal (% GDP) Rate Cut (%) Macro-Financial (% GDP) Other Monetary BoP (% GDP) Other BoP Stimulus Index

Myanmar 0.10 18.75 0.00 1.00 0.00 0.00 -0.18
Namibia 0.00 16.00 0.00 0.00 0.00 0.00 -1.33
Nepal 0.00 0.00 0.00 1.00 0.00 0.00 -0.53
Netherlands 2.30 0.00 7.31 1.00 0.00 0.00 0.84
New Zealand 5.40 75.00 8.86 1.00 0.00 0.00 2.91
Nicaragua 0.00 7.50 0.00 1.00 0.00 0.00 -0.40
Niger 0.02 0.00 0.00 1.00 0.00 0.00 -0.53
Nigeria 0.01 0.00 2.40 1.00 0.00 1.00 -0.61
N. Macedonia 0.20 12.50 0.00 1.00 0.00 1.00 -0.68
Norway 2.20 83.33 0.00 1.00 0.00 0.00 1.33
Oman -2.50 60.00 25.09 1.00 0.00 0.00 3.61
Pakistan 2.54 16.98 0.00 1.00 0.00 0.00 0.18
Papua N. Guiena 0.05 0.00 0.00 0.00 0.00 0.00 -1.61
Paraguay 6.50 18.75 0.00 0.00 0.00 0.00 -0.23
Peru 0.78 44.44 0.00 1.00 0.90 0.00 0.14
Philippines 0.15 18.75 1.60 1.00 0.00 0.00 0.05
Poland 6.50 33.33 0.00 1.00 0.00 0.00 1.12
Portugal 4.70 0.00 7.31 1.00 0.00 0.00 1.23
Qatar 13.00 43.73 1.43 1.00 0.00 0.00 2.55
Panama 3.25 0.00 2.00 1.00 0.00 0.00 0.26
Romania 3.00 20.00 0.00 1.00 0.00 0.00 0.31
Russia 0.30 0.00 0.39 1.00 0.00 0.00 -0.43
Rwanda 1.50 0.00 0.00 1.00 0.00 0.00 -0.29
San Marino 0.00 0.00 0.00 1.00 0.00 0.00 -0.53
Saudi Arabia 0.80 63.49 1.90 1.00 0.00 0.00 1.00
Senegal 7.00 0.00 0.00 1.00 0.00 0.00 0.59
Serbia 1.00 22.22 0.00 1.00 0.00 0.00 0.04
Seychelles 0.00 20.00 2.27 1.00 0.00 0.00 0.14
Sierra Leone 0.00 9.09 0.00 1.00 0.00 1.00 -0.78
Singapore 10.50 0.00 0.00 1.00 0.00 0.00 1.16
Slovak Rep. 0.30 0.00 7.31 1.00 0.00 0.00 0.52
Slovenia 6.60 0.00 7.31 1.00 0.00 0.00 1.54
S. Africa 0.20 16.00 0.00 1.00 0.00 0.00 -0.21
Spain 1.00 0.00 7.31 1.00 0.00 0.00 0.64
SriLanka 0.11 3.59 0.00 1.00 0.00 1.00 -0.86
Sudan 0.00 0.00 0.00 0.00 0.00 0.00 -1.62
Suriname 0.01 0.00 0.00 0.00 0.00 0.00 -1.62
Sweden 9.20 73.33 9.45 1.00 0.00 0.00 3.58
Switzerland 6.00 0.00 0.51 1.00 2.9 0 0.00 -0.33
Tajikistan 0.00 -4.08 0.00 1.00 0.00 1.00 -1.01
Tanzania 0.00 0.00 0.00 0.00 0.00 0.00 -1.62
Thailand 3.00 40.00 0.58 1.00 0.00 1.00 0.35
Togo 2.00 0.00 0.00 1.00 0.00 0.00 -0.21
Tonga 0.00 0.00 0.00 1.00 0.00 0.00 -0.53
Trinidad Tobago 3.25 30.00 0.00 1.00 0.00 1.00 0.13
Tunisia 2.00 12.90 0.99 1.00 0.00 0.00 0.16
Turkey 2.00 9.30 0.00 1.00 0.00 1.00 -0.45
Turkmenistan 0.00 0.00 0.00 0.00 0.00 1.00 -2.02
Uganda 0.02 0.00 0.00 1.00 0.00 0.00 -0.53
Ukraine 0.00 0.00 0.00 1.00 0.00 0.00 -0.53
UAE 1.80 62.50 6.70 1.00 0.00 0.00 1.81
UK 2.50 86.67 9.09 1.00 0.00 0.00 2.69
United States 10.50 100 0.00 1.00 0.00 0.00 2.97
Uruguay 0.00 0.00 1.00 1.00 0.00 1.00 -0.80
Uzbekistan 1.50 0.00 0.00 1.00 0.00 0.00 -0.30
Vietnam 0.33 14.48 3.30 1.00 0.00 0.00 0.24
Yemen 0.00 0.00 0.00 0.00 0.00 0.00 -1.62
Zambia 0.02 0.00 0.00 1.00 0.00 0.00 -0.53
Zimbabwe 0.21 28.57 0.03 0.00 0.00 1.00 -0.39

Fiscal stands for the fiscal policy package as a percent of GDP, Rate cut is the interest rate cut as a percent of the pre-crisis level, Macro-Financial
is the monetary stimulus package as a percent of GDP, other monetary is a dummy variable taking the value of 1 if there are other accompanying
monetary measures, BoP is the monetary intervention to control the balance of payments and the exchange rate as a percent of GDP and finally,

Other BoP is a dummy variable taking the value of 1 if there are other accompanying measures towards stabilizing BoP and exchange rate.
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Table A.4: Principle Component Analysis

Component Eigen Value Difference Proportion Cumulative

Component 1 1.63 0.44 0.27 0.27
Component 2 1.19 0.10 0.20 0.47
Component 3 1.08 0.33 0.18 0.65
Component 4 0.75 0.04 0.13 0.78
Component 5 0.71 0.07 0.12 0.89
Component 6 0.64 0.11 1.00

Variable Comp 1 Comp 2 Comp 3 Comp 4 Comp 5 Comp 6

Fiscal 0.58 -0.04 -0.22 0.15 -0.22 0.73
Rate Cut 0.39 -0.21 0.54 -0.67 0.2 0.05
Macro-Financial 0.55 -0.12 -0.01 0.49 0.53 -0.39
Other Monetary 0.39 0.54 0.25 0.03 -0.59 -0.39
BoP -0.17 -0.43 0.67 0.50 -0.28 0.12
Other BoP -0.16 0.68 0.38 0.17 0.44 0.38
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What is the impact of anxiety on vote choice? Building on a well-documented 
phenomenon in finance, we posit that voters will exhibit a “flight to safety” by 
turning toward establishment candidates. We test this theory in the context 
of the Democratic primary election of 2020 by examining changes in the 
vote shares of Bernie Sanders, a candidate promising disruptive change. 
We use the outbreak of the novel coronavirus across both space and time to 
identify a causal effect of the outbreak on voting. By comparing counties with 
and without reported cases in their local media market, before and after the 
outbreak of the virus, we show that COVID-19 resulted in diminished support 
for Sanders as compared to his support in the 2016 election, and interpret 
this to be the result of COVID-induced anxiety altering vote choice. We test 
alternative mechanisms, such as differential changes in turnout by age 
groups more and less supportive of Sanders, selection effects in which areas 
less supportive of Sanders were more exposed, and the coincident timing of 
the outbreak with the Democratic party rallying around Biden. We find little 
support for these alternative pathways, bolstering our claim that the results 
are consistent with a political flight to safety. Our findings suggest an as-yet 
underappreciated preference for “safe” candidates in times of social anxiety.

1	 Postdoctoral Research Associate, Niehaus Center for Globalization and Governance, Princeton University.
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1 Introduction

As COVID-19 began to dominate the headlines of US Newspapers in March 2020, it
displaced coverage of the Democratic primary election. In that campaign, one of the two
leading candidates had been running on a platform centered on universal health care. One
might reasonably imagine that a growing pandemic would lead to a surge in support for that
candidate. It did not.

Bernie Sanders did not merely fail to surge as the novel coronavirus came to dominate
the headlines in 2020 – if anything, his campaign faded. We explore whether COVID-19 had
anything to do with Sanders’ decline in support.

The novel coronavirus appeared in the middle of the Democratic primary season. On
Super Tuesday, COVID-19 cases were in the news, but public concern in the US was modest.
There were a little over 100 total cases in the US, and the bulk of TV and print news content
was focused on the elections. And why shouldn’t it be? President Trump, after all, had said
just a few days prior that COVID-19 was soon “going to disappear” (Leonhardt, 2020).

President Trump’s projection was, unfortunately, incorrect. Just 14 days later, when
voters in 3 states cast their ballots in March 17th Democratic primaries, President Trump
had already declared a national state of emergency; most of the nation’s schools were closed;
the stock market had lost over 20% of its value; and many people had begun staying home
to practice “social distancing”.

In this paper, we ask whether the novel coronavirus hurt the electoral prospects of
Bernie Sanders, the more anti-establishment candidate. We find that it does – with COVID-
19’s appearance associated with as much as a 7 percentage point decline for Sanders in areas
where COVID-19 appears prior to voting as compared to similar counties where COVID-19
only appears following the casting of votes.

Our interrogation is motivated by a well-documented financial phenomenon that has,
as yet, not been applied to voting behavior – namely, a “flight to safety”. We pre-specified
this hypothesis and our empirical specifications, registering a preanalysis plan prior to an-
alyzing any data, and prior to the primaries of March 17th.1 We explore whether anxiety
generated by the unexpected outbreak of COVID-19 impacted voting decisions. Empirically,
we compare how counties voted before and after the virus was widespread, in areas where the
virus was relatively prevalent and where it was not. We show that where the virus emerged
prior to the primary election, vote shares for Sanders fell.

Examining a primary election between two challengers allows us to avoid confound-
ing our theorized flight to safety with a purely retrospective evaluation of the incumbent.
Precisely because neither Biden nor Sanders held power during the outbreak, we are able to
isolate the mainstream versus anti-establishment distinction between the Biden and Sanders
campaigns, allowing for a tighter test of the motivating theory. Of course, there are other

1This registration is at https://egap.org/content/fear-and-flight-safety-covid-19-and-2020-democratic-
primary, however the design itself is temporarily gated. We are happy to provide the plan itself on request.
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dimensions along which the Biden and Sanders campaigns differ besides the distinction be-
tween their mainstream and anti-establishment qualities. We consider and reject plausible
alternative mechanisms, providing suggestive evidence that our interpretation of the findings
– a “flight to safety” – is most consistent with the empirical evidence.

That this result obtains despite what should be a policy platform whose appeal in-
creases with the pandemic leads us to conclude that the power of the “flight to safety” in
the context of voting is an important, but as yet unaccounted for, phenomenon in the voting
literature.

2 Theory & Context

Scholars of financial markets and market analysts often discuss markets’ “flight to
safety” (e.g. Adrian, Crump and Vogt 2019; Inghelbrecht et al. 2013). As market outcomes
become more uncertain, risk appetite falls. Anxiety drives market players to reduce their
level of risk. In the context of investing, this behavior typically involves shifting assets
towards more liquid and Government-insured assets, which are perceived as safer.

While there is a literature on voters’ response to terrorism, (e.g. Getmansky and
Zeitzoff 2014; Montalvo 2011) there is little research on the effects of anxiety more broadly
and whether anxiety shifts votes shifting towards candidates perceived as less risky.2 Existing
studies of crisis voting largely focus on the retrospective evaluation of incumbents in the
context of adverse shocks, be they security-related (Gutiérrez, 2014), economy-related (e.g.
Nezi 2012; Remmer 1991; Abramson et al. 2007), or broadly about the performance of
incumbents in crises (e.g. Smith 1998).

Typically, political scientists rely on either rational actor models or cognitive frame-
works to predict vote choice (i.e., Canes-Wrone, Herron and Shotts 2001; Green and Palmquist
1994; Maskin and Tirole 2004). A rational actor model might predict that Bernie Sanders’
platform emphasizing universal healthcare access should win the day by appealing to a
timely concern of voters. The “flight to safety” perspective generates the opposite predic-
tion – namely that the Sanders campaign would suffer from the increased anxiety generated
by the outbreak of the novel coronavirus. By examining the effect of anxiety on the choice
between two aspirants for President not part of the administration in power at the time of
the anxiety-inducing crisis, this paper provides insight on whether a more general “flight to
safety” occurs in voting independent of any attribution of responsibility to the candidates
for the crisis itself.

In the case of the 2020 democratic primary, Joe Biden represented safety and Bernie
Sanders a disruption of “political as usual”. Biden portrayed himself as representing conti-
nuity and the security of the known – an “Obama-Biden Democrat”, as Biden himself put

2One notable exception is Campante, Depetris-Chauvin and Durante 2020, who examine candidates’
strategic manipulation of Ebola-induced fear of immigrants in the 2014 US midterm elections and find
results complementary to this paper’s.
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it in a campaign speech (Fegenheimer and Glueck, 2020). Sanders, in contrast, promised
to “change the power the structure in America” (Stewart 2020), portraying himself as a
candidate who (in the words of his 2020 campaign spokesman) pushed against “the limits
of politics as usual” (Eilperin 2020). Voters apparently understood these divergent appeals,
with exit polls in a number of states indicating that Sanders won a majority of those voters
for whom the most important quality in a candidate was “Can Bring Needed Change”, while
Biden was preferred by those for who most valued “Can Unite the Country”.3

We hypothesize that growing anxiety due to the outbreak of the novel coronavirus
reduces the appeal of a disruptive outsider like Sanders. We predict that a political flight
to safety will manifest in decreased votes for Sanders where voting occurs after a COVID-19
infection is identified in a Designated Market Area (DMA), all else equal. Those living in
places where positive COVID-19 tests occurred are likely to have experienced more anxiety
than those for whom infection was a more distant possibility, at least during the period we
examine.4 We use these twin sources of variation in anxiety induced by the disease – i.e.,
cross-sectional variation due to differences in exposure and temporal variation in the timing
of the outbreak – to empirically estimate the effect of COVID-19 on Democratic primary
vote choice.

We emphasize that if the anxiety mechanism we describe does not obtain, voters might
be more supportive of Sanders due to his policy platform, making this a particularly hard test
for the theory. That is, Sanders’ emphasis on universal healthcare should appeal to voters
who are exposed to the novel coronavirus and face a more acute need for care. Similarly,
Sanders’ more expansive protections for working class voters should grow more appealing as
the spectre of recession and job losses grew. Given that Sanders’ policy platform should be
more attractive following COVID-19’s emergence, we believe our empirics constitute a hard
test of the motivating theory.

3 Data and Methods

We combine several data sources to measure our outcome variable, explanatory vari-
able, and controls.

3See exit polls as reported by CNN, https://edition.cnn.com/election/2020/entrance-and-exit-
polls/STATE NAME/democratic, e.g. those from Michigan and Washington. In some states – e.g. California
– the candidates won a plurality, but not the majority, of those who felt the most important quality was
change and unity respectively.

4As national media coverage of the outbreak became ubiquitous, our ability to leverage geographic vari-
ation declines. We discuss and test these SUTVA assumptions below and in our Supporting Information.
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Outcome Variable

Our outcome variable is the change in the county-level vote share for Bernie Sanders
between 2016 and 2020. The 2016 data was obtained from https://www.nytimes.com/

elections/2016/results/primaries/[STATE]. The 2020 data was obtained from the
“State Results” tab on the https://www.nytimes.com/interactive/2020/03/17/us/elections/
results-primary-elections-florida-illinois-arizona.html page at noon on March
18th. At the time of writing, over 97% of counties had 100% reporting.

Throughout our paper, we refer to the “start-date” of the outbreak as either after
March 1st, after March 3rd, or after March 10th. These dates are chosen such that the three
waves of primary elections in March fall into either treatment or control, as defined in Table
1. We further exploit the timing of elections for robustness checks and placebo tests in our
Supporting Information.

Start Date Control Treatment
March 1st Feb ST, March 10th, & March 17th
March 3rd Feb & ST March 10th & March 17th

March 10th Feb, ST, & March 10th March 17th

Table 1: Treatment and control elections by outbreak “start date”. February (Feb) primaries
include IA, NV, and SC. Super Tuesday (ST) primaries include AL, AR, CA, CO, ME, MN,
NC, OK, TN, TX, UT, and VA. March 10th primaries include ID, MI, MS, ND, and WA.
March 17th primaries include AZ, FL, and IL. (Ohio’s was postponed due to the outbreak.)
MA, VT, and NH are excluded as they do not aggregate votes by county in reporting totals.

Explanatory Variable

We use data from two separate sources for county-level COVID-19 infection data. The
first is the github account for Johns Hopkins University CSSE Coronavirus Resource Center
https://github.com/CSSEGISandData/COVID-19/blob/master/csse_covid_19_data/csse_

covid_19_time_series/time_series_19-covid-Confirmed.csv. The second is from a
non-profit website developed by a variety of academics and professionals called 1Point3Acres
https://coronavirus.1point3acres.com/#stat. We scraped these data in the evening of
March 16th, 2020 using the rSelenium package for R. At the time of writing, the JHU data
coverage only extends through March 9th while our March 16th scrape of 1Point3Acres is, to
the best of our understanding, accurate for that date. Maps of the geographic distribution
of the outbreak by DMA on March 2nd (the eve of Super Tuesday), March 9th (the eve of
the second round of multiple state primaries), and March 16th (the eve of Arizona, Illinois,
and Florida) are presented in Figure 1.
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Figure 1: Maps of the geographic and temporal variation in the spread of the virus between
March 2nd and March 17th. March 2nd and March 9th data are from Johns Hopkins
University. March 16th data are from 1Point3Acres.

Controls

We obtain a rich set of pre-treatment county-level controls from the five year averages
of the American Community Survey (2018). These county-level controls are:6
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• total population

• % of the population that is rural

• % of the population that is white

• % of the population with a bachelor’s degree

• the county’s old-age dependency ratio (retirees to workers)

• Share of households that are headed by a woman without a husband present

• % of the population that speaks only English

• % of population between 18 and 64 that is below the poverty level

• % of the population employed in manufacturing

• the county-level unemployment rate

• the county-level labor force participation rate

• the median household income

Methods

We are interested in identifying the causal effect of exposure to the novel coronavirus on
Democratic primary voters’ decisions. While the outbreak of COVID-19 was an exogenous
shock to voter anxiety, it is confounded in three ways. First, the timing of treatment is
colinear with other explanations for changing electoral fortunes, such as the decision by
several primary candidates to drop out (Staff, 2020), signaling a consolidation of party
support behind Biden (Yglesias and Beauchamp, 2020). A simple before-after comparison of
election returns would be unable to disentagle our “flight to safety” theory from a coincidental
shift in electoral momentum.

Second, we might expect that older voters are more dissuaded from appearing at the
polls following the appearance of COVID-19 due to the increased risks of exposure. Insofar
as younger voters are relatively more supportive of Sanders, this would bias our results in a
conservative direction, making it harder to identify a negative relationship between exposure
and Sanders’ vote share.5

Third, if areas that were already more anti-Sanders were also those most exposed to
the outbreak, our results would pick up a spurious selection effect.

5There is also the possibility of a selection bias which would obtain of exposed counties were more anti-
Sanders to begin with. We predict Sanders’ 2016 voteshare as a function of exposure and find, if anything,
these counties are more pro-Sanders. To the degree that there is selection bias, it works against our results.
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We posit that anxiety due to the disease is a function of both temporal and geographical
variation, allowing us to address these confounds. We define exposure as binary variable
taking on the value of 1 if a county c resides in a designated market area (DMA) with
confirmed cases of COVID-19 on the eve of their primary election date, and 0 otherwise,
denoted with COV IDc. We estimate the difference in the change in Bernie Sanders’ vote
share from 2016 to 2020, between exposed and unexposed counties, or E[∆Y1 −∆Y0], where
∆Y is the county-level change in Sanders’ primary vote share, and the 1 and 0 subscripts
represented treated and control counties, respectively.6 We also include fixed effects for the
date of the election, thus restricting comparisons to differences in a given election “wave”
and thus partially controlling for anything that may have varied between election dates (e.g.
number of candidates in the race). This helps ensure that our findings are indeed picking up
on growing anxiety around COVID-19 associated with local knowledge (via media coverage)
of cases. Our simplest specification, as per our PAP, takes the form:

∆Yc = β0 + β1COV IDc + γX + λ+ εc (1)

where X is the vector of county-level controls summarized above, and λ are date of election
fixed effects.

However, since counties with earlier exposure to COVID-19 are disproportionately
more densely populated coastal areas, this specification risks dissimilarities between treat-
ment and control counties. To address this bias, we also leverage the staggered timing of
both vote date and exposure to estimate a pseudo difference-in-differences (DID) specifica-
tion where we compare the difference in the outcome between treated and control groups
prior to the outbreak to the difference in these groups following the outbreak.

This design is complicated by the fact that, unlike standard DID settings, we do not
observe outcomes in the pre and post period for every unit, precluding our ability to measure
E[Yi,t=1 −Yi,t=0] at the county level. Instead, we must assume that those counties who voted
in the pre period but would go on to be exposed to COVID-19 are valid counter-factuals
for those counties that were exposed to COVID-19 and voted in the post period. Similarly,
we must assume that the control counties that voted in the pre period (i.e., those that did
not experience the COVID-19 outbreak in the post period) are valid counterfactuals for the
control counties that voted in the post period.

We augment our conditional independence assumption (CIA) with matching and bal-
ancing strategies to ensure we are comparing otherwise similar counties who differ only in the
timing of their exposure to COVID-19. We obtain good balance on a rich set of pre-treatment

6By defining the outbreak as happening after Super Tuesday when the field narrowed to a contest between
Sanders and Biden the 2020 Sanders vote share is more directly comparable to the 2016 contest, effectively
a two-candidate contest between Sanders and Hillary Clinton. To the extent that this comparison fails we
expect it will bias results downwards rather than increase the chance of spurious statistically significant
findings; when the field narrowed after Super Tuesday that increased the Sanders vote share and thus biases
against us finding decreased support for Sanders, all else equal. Furthermore we also acknowledge that
several states (including CO, ME, MN, UT, and WA) switched from caucuses to primaries between 2016 and
2020. While Bernie does better on average in caucus states, all five of these are included in the pre-period
in our main specification, ensuring that they do not drive our results.
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covariates using either nearest neighbor matching (based on minimized Mahalanobis dis-
tance), or covariate balanced propensity score weights (CBPS).7 Our causal interpretation
hinges on our claim that exposure is as-if randomly assigned to counties conditional on the
observables we control for, match on, and balance over.

One final concern that we believe grows more problematic as the virus spreads is
the Stable Unit Treatment Value Assumption, or SUTVA. Substantively, this assumption
requires that our control counties are not affected by treatment spillovers from treated coun-
ties. Our treatment exposure is defined at the DMA-level, based on the assumption that
the salience of the disease is elevated via local media markets which report on more geo-
graphically proximate cases. We believe this is sensible for the beginning of March, when
the virus was just beginning to spread across the United States. However, by the time of the
March 17th elections, national media outlets (e.g. cable news, newspapers, news websites,
and online social media such as Facebook (Roose and Dance, 2020)) had shifted coverage to
focus almost exclusively on the outbreak as the crisis worsened. Thus many of our notionally
“control” counties experienced substantial levels of anxiety despite not residing in a DMA
with confirmed cases of the virus, with “control” counties becoming decreasingly valid coun-
terfactuals for counties in a DMA where a COVID-19 case had been diagnosed with each
passing week. We include an exhaustive series of pairwise comparisons in which we define
one primary election as treated, and another as control, in our Supporting Information.

4 Results

Our main results are summarized in Table 3, in which treatment is defined at the
DMA as all confirmed cases of COVID-19 on March 9th, 2020 as reported in the Johns Hop-
kins University data as of March 21st, 2020. The first two columns present the coefficients
on a binary measure of exposure (1 if any cases were recorded in the DMA, 0 otherwise),
and a continuous count of the number of confirmed cases as of March 9th, 2020. Clus-
tered standard errors at the DMA-election are presented in parentheses. The coefficients in
the odd-numbered columns represent the standard deviation change in support for Bernie
Sanders between 2020 and 2016 (approximately 12 percentage points) due to the impact of
exposure to the virus. The coefficients in the even-numbered columns represent the same
standard deviation change in Sanders’ support due to the impact of a one standard deviation
increase in the number of confirmed cases of COVID-19 (approximately 12.5 cases).

The results indicate that counties that voted after Super Tuesday (March 3rd) and
which were exposed to the novel coronavirus were less likely to support Sanders as compared
to counties that voted prior to March 10th and counties that voted on or after March 10th
but did not reside in a DMA with any reported cases. According to Columns 1 and 2, being
exposed to the virus corresponds to an estimated 0.36 standard deviation decline in support
for Sanders as compared to his 2016 vote share, over and above the decline in Sanders vote
share in matched counties in the control group. This corresponds to an expected change

7Balance results are included in our Supporting Information.
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of approximately 4.1 percentage points less support for Sanders compared to the 2016 vote
share he enjoyed in the average county. This result is reinforced at the intensive margin, as
illustrated by the negative and significant coefficient in column 2, suggesting that a standard
deviation increase in the number of confirmed cases (roughly 99 new cases in the DMA)
corresponds to a 0.12 standard deviation decline in support for the Sanders’ campaign, or
roughly 1.5 percentage points, relative to 2016.

However, the results in columns 1 and 2 rely on the assumption that insulated and
exposed counties are valid counterfactuals for each other after controlling for a variety of
demographic and economic county-level factors. In columns 3 and 4, we reduce our reliance
on this assumption by employing a nearest-neighbors matching strategy in which we identify
the most similar control county for each treated county in our dataset based on the same
county-level covariates. We use Mahalanobis distance measures to summarize the difference
across our twelve county-level covariates and choose the county that is most similar to each
treated county in terms of this distance measure.8

Substantively, this approach strengthens our conditional independence claim that we
are comparing otherwise similar counties that differ only in the timing of their exposure and
the number of cases experienced, which are both exogenous events. As indicated in columns
3 and 4 of Table 3, this matching strategy strengthens our conclusions, suggesting that
exposure to the pandemic reduces support for the Sanders’ campaign by almost 60% of a
standard deviation for the binary measure (column 3), and a third of a standard deviation for
the continuous measure (column 4). These suggest that the substantive impact on COVID-
19 exposure is non-trivial, accounting for approximately 7 percentage points slippage for
Sanders vote share between 2016 and 2020.

However, matching strategies such as the method we implement require us to jettison
a substantial number of observations. As indicated at the bottom of Table 3, we rely on less
than 15% of our total observations to draw these conclusions, choosing only those control
observations that are most similar to the treated according to the Mahalanobis distance
measure across the 12-dimensional covariate space. As a final test, we instead employ a
weighting strategy that re-weights the control observations to best approximate the treated
observations, without throwing any information away. Specifically, we implement the optimal
weighting method of Zubizarreta (2015), achieve good balance across all observables, as
summarized in Table 4 in our Supporting Information.

Columns 5 and 6 summarize the weighted estimates, suggesting that exposure to the
novel coronavirus predicts a decline in support quite similar to the unmatched regression in
columns 1 and 2 - with Sanders’ support declining slightly less than half a standard deviation
for the binary treatment measure, and 0.12 standard deviations in response to a standard
deviation increase in cases. Notably, our predictive power increases meaningfully from an
R2 of just under 0.40 to over 0.45 with the weighting method employed in columns 5 and 6.

8We achieve good balance, as demonstrated in the balance tests reported in the Supporting Information,
specifically Figure 8.
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Table 2: Main Results: Change in Sanders Support ∼ Exposure

Dependent variable: ∆ Sanders Vote Share
Basic Matching Weighting

Bin. Cont. Bin. Cont. Bin. Cont.

(1) (2) (3) (4) (5) (6)

Treatbin −0.361 −0.600∗∗ −0.472∗∗

(0.231) (0.251) (0.226)

Treatcont −0.102∗∗∗ −0.300∗∗∗ −0.119∗∗∗

(0.012) (0.036) (0.006)

Tot pop 0.036 0.032 0.131∗∗ 0.109∗ −0.015 −0.016
(0.030) (0.028) (0.065) (0.062) (0.011) (0.011)

Old age dep ratio 0.024 0.017 0.047 0.055 0.098∗∗ 0.096∗∗

(0.046) (0.045) (0.087) (0.091) (0.045) (0.044)

Bachelor’s degree −0.071 −0.066 0.156 0.194∗ −0.030 −0.024
(0.054) (0.055) (0.115) (0.110) (0.060) (0.060)

Female HH no husband 0.380∗∗∗ 0.383∗∗∗ 0.346∗∗∗ 0.329∗∗∗ 0.363∗∗∗ 0.357∗∗∗

(0.056) (0.056) (0.115) (0.099) (0.068) (0.068)

Md inc HH 0.084 0.087 −0.136 −0.121 0.027 0.027
(0.064) (0.064) (0.184) (0.177) (0.056) (0.055)

Manufacturing 0.125∗∗∗ 0.129∗∗∗ 0.080 0.085 0.059 0.062
(0.048) (0.048) (0.078) (0.067) (0.047) (0.047)

Speak only english −0.309∗∗∗ −0.306∗∗∗ −0.195∗ −0.190∗∗ −0.360∗∗∗ −0.360∗∗∗

(0.051) (0.051) (0.101) (0.094) (0.041) (0.042)

Below poverty level 0.021 0.020 −0.106 −0.110 −0.015 −0.017
(0.039) (0.039) (0.094) (0.089) (0.050) (0.050)

White −0.069 −0.067 0.012 −0.006 −0.132∗∗ −0.134∗∗

(0.066) (0.066) (0.098) (0.093) (0.062) (0.063)

LFPR −0.073∗ −0.072∗ −0.163 −0.122 −0.059 −0.061
(0.041) (0.040) (0.145) (0.160) (0.055) (0.055)

Unem rate 0.040 0.043 0.147∗∗ 0.150∗∗ 0.034 0.037
(0.041) (0.041) (0.074) (0.070) (0.036) (0.036)

Rural 0.017 0.027 −0.136 −0.085 −0.066 −0.064
(0.037) (0.037) (0.096) (0.102) (0.059) (0.058)

Constant 0.300∗∗∗ 0.000 −0.083 −0.116
(0.108) (0.110) (0.071) (0.072)

Observations 1,657 1,657 234 234 1,657 1,657
R2 0.420 0.424 0.389 0.388 0.455 0.455
Election FE Y Y N N N N

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Robust standard errors clustered at the DMA-election indicated in parentheses.
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Differences-in-Differences

The preceding results exploit temporal variation in exposure, but operationalize this
variation in cross-sectional statistical analyses. In the following section, we instead turn to
a difference-in-differences specification in which we compare the difference between treated
and control counties prior to the outbreak with the difference in Sanders support among
these groups of counties following the outbreak.

The left panel of Figure 2 plots the simple averages of treated (blue) and control
(red) groups prior to (left) and following (right) the outbreak of the virus. Based solely
on this simple difference-in-differences, one might draw several conclusions. First, there
appears to be a decline in support for Sanders among both treated and control counties
following the outbreak of the novel coronavirus. Second, there is some evidence suggesting
that the counties that were exposed to the virus and voted after the outbreak shifted more
strongly against Sanders than those counties that were not exposed. The right panel of
Figure 2 presents bivariate regressions across groups, suggesting that there is a weak positive
association between the number of cases (logged, x-axis) and the change in Sanders vote share
between 2016 and 2020 in the pre-outbreak period (March 3rd and earlier, indicated in red).
Conversely, there is a clear negative correlation following the outbreak, as indicated by the
blue line.
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Figure 2: Descriptive differences between treated and control voting behavior before and
after the outbreak, defined as starting on March 4th. Left panel groups counties by whether
they were exposed as of March 9th, right panel plots the logged cases as of March 9th by
whether the county voted prior to, or following, the outbreak.

These plots are descriptive, and are not meant to support well-identified inferential
conclusions. As such, we turn to our conditional difference-in-difference regression specifica-
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tions. We examine both the basic conditional results as well as the matched and weighted
results using different dates for the beginning of ”treatment” in Figure 3. When we set the
treatment period to March 1st and include the exposed counties voting in Super Tuesday
among our treated group, we find significant evidence that exposure leads to declining sup-
port for Bernie Sanders. However, this effect declines over time, with the result attenuating
to a null when we define the outbreak starting after Super Tuesday and even some suggestive
evidence that the virus actually benefited Sanders among the counties voting on March 17th.
We suspect that these patterns reflect a broadening of the national coverage of the outbreak,
prompting SUTVA violations when we define exposure at the DMA. We test this suspicion
in our Supporting Information, and find that redefining the unit of exposure at the state
level recovers our main results. This suggests that the “flight to safety” occurs throughout,
but that as time passes information about diagnoses induces panic not just within the DMA
but state-wide.
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Figure 3: Diff-in-diff estimates for different start-dates of the outbreak (x-axis).

The Supplementary Information includes additional analyses specified in the pre-
analysis plan, including robustness checks, exploring sensitivity to shifting definitions of
treatment, choices of matching strategy, and balancing weights. These tests confirm the
main findings described above, with stronger results if we define treatment using deaths due
to COVID-19 instead of confirmed cases.

One of the primary inquiries we pursue in the Supplementary Information is to explore
whether alternative mechanisms explain the pattern of results. We find that differential
turnout is not a likely explanation of these findings, with turnout not being suppressed
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until the March 17th election and no evidence that age was particularly determinative. We
were also concerned that our results might be driven by a “party consolidation” effect. To
explore this we run a placebo test by permuting treatment, breaking the observed relationship
between exposure and voting behavior. We find consistent null results, suggesting that our
findings are not being driven by any secular Democratic party elite consolidation behind
Biden over time. Finally, we examine whether our results are driven by a selection effect
in which areas predisposed to vote against Sanders were disproportionately exposed to the
outbreak. If anything, our results indicate the opposite – counties that were more supportive
of Sanders in 2016 were more likely to be exposed in 2020, indicating that our results obtain
despite a conservative selection effect.

While not the only possible interpretation, we believe these results provide suggestive
evidence that voter anxiety and a flight to safety is the mechanism underlying the decline in
Sanders’ vote share induced by COVID-19’s appearance across space and time.

5 Discussion

These findings explore the substantive political effects of the novel coronavirus. We
conclude that exposure to the outbreak lead to a relative decline in Sanders support, showing
in our primary specification (Table 3) that COVID-19 exposure in a local media market
depresses vote shares for Sanders by up to 7 percentage points. The size of the COVID-19
effect is not large enough to have made Bernie Sanders the front-runner in the absence of
the novel coronavirus’ appearance. It is, however, a far from trivial effect.

We posit that these results are consistent with a political “flight to safety”, comple-
menting work by Campante, Depetris-Chauvin and Durante 2020, who find Ebola-induced
fear had substantial electoral consequences in the 2014 US midterm elections. We recognize
that there may be other alternative pathways that explain the effect we document. We
disconfirm several alternative mechanisms, including the coincident rallying of Democratic
party support behind Biden, the possibility that the outbreak disproportionately suppressed
Sanders supporters, and the selection effect of more anti-Sanders areas being more exposed.
We leave an explicit test of the proposed mechanism for future research.
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Supplementary Information

“Party Decides” Placebo Tests

The main results suggest that exposure to the novel coronavirus results in a greater
decline in support for a Sanders presidency than what we observe in relatively insulated
counties or those that voted prior to the outbreak. However, even with our matching and
weighting strategies to argue that the outbreak is as-good-as-randomly assigned conditional
on observables, there remains a concern with regards to timing. Specifically, our definition of
“exposure” is defined as any county residing within a DMA that had confirmed cases of the
virus as of March 9th, 2020. Effectively, this definition risks conflating other contemporane-
ous changes in the political landscape that occurred between Super Tuesday (March 3rd),
and the 10 states that voted afterwards (7 on March 10th, 3 on March 17th). Specifically,
this period saw the Democratic party rally around the establishment candidacy of Joseph
Biden as several candidates dropped out of the race and endorsed Biden.

To confirm our results are not simply picking temporal variation and the momentum
shift that occurred on Super Tuesday, we run a placebo test in which we permute our
explanatory variable while keeping our definitions of pre and post exposure at March 3rd.
If our main results are driven by the “party decides” phenomenon, we should still find a
significant negative relationship between Sanders’ declining vote share and our permuted
treatment. We bootstrap sample our data, each time drawing a permuted explanatory
variable, and re-estimate our main specifications. As illustrated in Figure 4, our results are
noisily estimated nulls.

match.bin

basic.bin

weight.bin

weight.cont

basic.cont

match.cont

weight.did

basic.did

−0.2 −0.1 0.0 0.1 0.2

Estimated Effect (Placebo)

Figure 4: Placebo test bootstrapped estimates generated by permuting the COVID-19 cases
while keeping the exposure start date starting after Super Tuesday.
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The results summarized above use outbreak dates to separate treated and control
elections as per Table 1, meaning that all elections prior and including a given cutoff are
defined as control, and all elections following the cutoff are treated. We also re-run our
analyses by conducting a series of pairwise comparisons in which one election is defined as
control and the other is defined as treated. Doing so allows us to identify where (and more
precisely, when) our effects obtain. We treat all primary elections prior to Super Tuesday
as one group in order to include multiple states in each treatment and control condition.
Figure 5 summarizes these results for every specification at our disposal. The Democratic
party consolidated support behind Biden ahead of Super Tuesday. As Figure 5 demonstrates,
the results do not depend on comparing the period before Super Tuesday to the period after,
and thus are not collinear with a “party consolidation” effect, though we cannot rule out
that such an effect may also contribute to the findings in the panel comparing Super Tuesday
to pre-Super Tuesday voting states.

We can also reverse the temporal sequencing of these results, creating placebo tests for
our conclusions. We treat the later election as the control, and the earlier as the treated, and
estimate the effect of future COVID-19 cases on vote choice. Our results are summarized in
Figure 6

Turnout and Age

Our main results suggest that Bernie Sanders was hurt by the outbreak of the virus,
although the effect attenuated over time. We argue that this is consistent with our theorized
mechanism of an electoral “flight to safety”. However, an alternative mechanism might be
that the outbreak differentially reduced turnout among different voting groups. One plausible
scenario might be that those most threatened by exposure might be less likely to turn out. If
this group is also more likely to support Sanders, there is an alternative explanation for the
effects we document. Of course, Sanders’ popularity among young voters is well-documented,
while the elderly are most threatened by the virus. As such, if this mechanism is operating,
it should be the case that older voters are less likely to turn out, and that therefore we
should see an increase in support for Sanders from younger voters.

We examine this alternative mechanism by replacing the change in Sanders’ vote share
with the change in county-level turnout. As illustrated in Figure 7, there is little evidence
to suggest that such an age-based dynamic is at play. As illustrated, it appears that turnout
wasn’t suppressed by the virus until after the March 10th elections, when it reduced turnout
for Illinois, Arizona, and Florida. (Ohio chose to delay its primaries due to concerns about
the virus.) Furthermore, the marginal effects of exposure across different populations of older
voters suggests that COVID-19 was less depressing to turnout in counties with more elderly
constituents, although the interaction effects are not statistically significant. Taken together,
these findings suggest that turnout was not appreciably influenced by COVID-19 exposure as
of March 3rd (95% confidence intervals for the marginal effects always include zero) and that,
although there is some evidence of heterogeneity across counties by share of the population
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Figure 5: Pairwise election comparisons by control (rows) and treatment (columns) given in
plot titles.

older than 64 years of age, these interaction coefficients are also insignificant. As such, we
are confident in our conclusion that the reduction in Sanders’ support is attributable to more
than simply shifting turnout dynamics across the period of analysis.

Selection Effects

Our results would be spurious if the outbreak disproportionately affected parts of the
country that were already anti-Bernie to begin with. Although our matching and weighting
strategies are one solution to minimizing this risk, we can also evaluate the identification
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Figure 6: Pairwise election comparisons by control (rows) and treatment (columns) given in
plot titles.

challenge directly. We replace our main outcome variable with Sanders’ 2016 voteshare,
testing whether 2020 exposure rates also predict 2016 Sanders support. We find, if any-
thing, a source conservative bias as shown in Table ??. Specifically, the counties that were
more exposed to the outbreak in 2020 were more supportive of Sanders in 2016, revealing a
selection effect that works against our main results.
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Table 3: Selection Effects: 2016 Sanders Voteshare ∼ Exposure

Dependent variable: 2016 Sanders Vote Share
Basic Matching Weighting

Bin. Cont. Bin. Cont. Bin. Cont.

(1) (2) (3) (4) (5) (6)

Treatbin 0.738∗∗∗ 0.779∗∗∗ 0.657∗∗∗

(0.268) (0.258) (0.254)

Treatcont 0.162∗∗∗ 0.356∗∗∗ 0.159∗∗∗

(0.007) (0.040) (0.007)

Tot pop 0.013 0.027 −0.100∗ −0.074 0.039∗∗∗ 0.039∗∗∗

(0.025) (0.018) (0.061) (0.059) (0.009) (0.009)

Old age dep ratio −0.146∗∗∗ −0.123∗∗∗ −0.322∗∗∗ −0.333∗∗∗ −0.218∗∗∗ −0.216∗∗∗

(0.045) (0.044) (0.109) (0.117) (0.053) (0.053)

Bachelor’s degree 0.111∗∗ 0.094∗∗ 0.051 0.001 0.056 0.048
(0.045) (0.045) (0.104) (0.097) (0.071) (0.071)

Female HH no husband −0.442∗∗∗ −0.451∗∗∗ −0.352∗∗∗ −0.337∗∗∗ −0.436∗∗∗ −0.428∗∗∗

(0.048) (0.051) (0.109) (0.097) (0.088) (0.087)

Md inc HH −0.109∗ −0.102 0.185 0.176 −0.055 −0.056
(0.064) (0.066) (0.177) (0.174) (0.075) (0.075)

Manufacturing −0.130∗∗∗ −0.142∗∗∗ 0.016 0.009 −0.037 −0.041
(0.040) (0.039) (0.076) (0.058) (0.054) (0.054)

Speak only english 0.096∗∗ 0.099∗∗∗ 0.040 0.033 0.150∗∗∗ 0.150∗∗∗

(0.038) (0.039) (0.094) (0.093) (0.044) (0.045)

Below poverty level 0.097∗∗ 0.103∗∗ 0.220∗∗ 0.226∗∗ 0.116∗∗ 0.119∗∗

(0.042) (0.043) (0.110) (0.094) (0.059) (0.060)

White 0.319∗∗∗ 0.326∗∗∗ 0.068 0.087 0.256∗∗∗ 0.259∗∗∗

(0.052) (0.052) (0.080) (0.085) (0.063) (0.065)

LFPR 0.108∗∗∗ 0.101∗∗∗ 0.038 −0.018 0.150∗∗ 0.152∗∗

(0.037) (0.039) (0.159) (0.178) (0.076) (0.075)

Unem rate 0.047 0.052 −0.003 −0.003 0.116∗∗∗ 0.112∗∗∗

(0.035) (0.034) (0.094) (0.085) (0.037) (0.038)

Rural −0.071∗ −0.111∗∗∗ 0.201∗∗ 0.136 0.098 0.095
(0.037) (0.034) (0.092) (0.096) (0.067) (0.070)

Constant −0.052 0.000 −0.390∗∗∗ −0.000 0.228∗∗∗ 0.275∗∗∗

(0.056) (0.056) (0.099) (0.133) (0.076) (0.085)

Observations 1,657 1,657 234 234 1,657 1,657
R2 0.504 0.498 0.436 0.410 0.374 0.368
Election FE Y Y N N N N

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Robust standard errors clustered at the DMA-election indicated in parentheses.
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Figure 7: Marginal effects of exposure on turnout (y-axes) across counties with smaller and
larger proportions of their population older than 64 years of age (x-axes) by outbreak onset
date (panels). None of the marginal effects are themselves significant at conventional levels.

Balance and Weighting Robustness

We achieve good balance on both the matching and weighting strategies employed in
the body of our paper. Figure 8 plots the improvements to balance on observables between
treated and control units generated by our choice of nearest-neighbor matching using mini-
mized Mahalanobis distance. And Table 4 summarizes the differences in treated and control
covariates prior to, and following the optmatch weights. In both cases, we successfully adjust
our data to better reflect the distribution of observables in an experimental context in which
treatment is randomly assigned.

We also confirm the robustness of our main findings to different choices about the
matching strategy and the balancing weights. Specifically, we re-estimate our main findings
replacing the optweight method of Zubizarreta (2015) with covariate balancing propensity
scores (CBPS, Imai and Ratkovic 2014), and replacing the nearest neighbor matching strat-
egy with coarsened exact matching (CEM, Blackwell et al. 2009). The former robustness
check yields substantively and statistically similar findings to our main results, as illustrated
in Tables 5 and 6.

Moving from nearest neighbor matching based on Mahalanobis distance to the CEM
method requires us to reduce the number of county-level covariates we use for matching. This
is due to the default parameter settings yielding only two matched observations, precluding
our ability to estimate treatment effects. We reduce our set of covariates to select the
following six across which we can obtain reasonably good performance on our balance tests
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Figure 8: Balance of treated and control covariates before (red) and after (blue) matching.
45 degree line indicates perfect match.

Table 4: Weighting Balance Checks

Covs Diff Unm Bal Test Unm Diff Match Bal Test Match

1 County Pop 0.320 Not Balanced, >0.05 0 Balanced, <0.05
2 Old-Age Dep Ratio 0.240 Not Balanced, >0.05 0 Balanced, <0.05
3 % Bachelor’s 0.370 Not Balanced, >0.05 0 Balanced, <0.05
4 Female HH, No Hub -0.410 Not Balanced, >0.05 0 Balanced, <0.05
5 Median HH Inc 0.370 Not Balanced, >0.05 0 Balanced, <0.05
6 % Manuf -0.690 Not Balanced, >0.05 0 Balanced, <0.05
7 % Speak English -0.300 Not Balanced, >0.05 0 Balanced, <0.05
8 % Below Pov -0.160 Not Balanced, >0.05 0 Balanced, <0.05
9 % White 0.250 Not Balanced, >0.05 0 Balanced, <0.05
10 LFPR -0.100 Not Balanced, >0.05 0 Balanced, <0.05
11 Unemp Rate 0.130 Not Balanced, >0.05 0 Balanced, <0.05
12 %Rural -0.770 Not Balanced, >0.05 0 Balanced, <0.05

while also obtaining enough observations for statistical inference:

• % 65 and older

• % with bachelor’s degree
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Table 5: Main results using CBPS instead of optweights

Dependent variable:

bsc.bin bsc.cont mtc.bin mtc.cont wgt.bin wgt.cont

(1) (2) (3) (4) (5) (6)

Treatbin −0.361 −0.600∗∗ −0.496∗∗

(0.238) (0.258) (0.225)

Treatcont −0.102∗∗∗ −0.300∗∗∗ −0.106∗∗∗

(0.013) (0.038) (0.011)

Tot pop 0.036 0.032 0.131∗∗ 0.109∗ 0.017 0.013
(0.030) (0.028) (0.065) (0.063) (0.026) (0.021)

Old age dep ratio 0.024 0.017 0.047 0.055 0.065∗ 0.047
(0.046) (0.046) (0.087) (0.088) (0.035) (0.030)

Bachelor’s degree −0.071 −0.066 0.156 0.194∗ 0.012 0.049
(0.054) (0.055) (0.114) (0.106) (0.078) (0.078)

Female HH no husband 0.380∗∗∗ 0.383∗∗∗ 0.346∗∗∗ 0.329∗∗∗ 0.354∗∗∗ 0.317∗∗∗

(0.053) (0.054) (0.115) (0.096) (0.081) (0.075)

Md inc HH 0.084 0.087 −0.136 −0.121 −0.096 −0.081
(0.061) (0.061) (0.183) (0.173) (0.087) (0.082)

Manufacturing 0.125∗∗∗ 0.129∗∗∗ 0.080 0.085 −0.011 0.002
(0.048) (0.048) (0.077) (0.064) (0.068) (0.055)

Speak only english −0.309∗∗∗ −0.306∗∗∗ −0.195∗∗ −0.190∗∗ −0.211∗∗∗ −0.215∗∗∗

(0.050) (0.050) (0.097) (0.088) (0.066) (0.065)

Below poverty level 0.021 0.020 −0.106 −0.110 −0.070 −0.084∗

(0.040) (0.040) (0.093) (0.083) (0.052) (0.049)

White −0.069 −0.067 0.012 −0.006 −0.111∗ −0.130∗∗

(0.064) (0.064) (0.091) (0.084) (0.059) (0.063)

LFPR −0.073∗∗ −0.072∗∗ −0.163 −0.122 −0.008 −0.023
(0.036) (0.036) (0.143) (0.158) (0.067) (0.070)

Unem rate 0.040 0.043 0.147∗ 0.150∗∗ 0.138∗∗ 0.165∗∗∗

(0.040) (0.040) (0.077) (0.073) (0.057) (0.060)

Rural 0.017 0.027 −0.136 −0.085 −0.153∗∗∗ −0.131∗

(0.038) (0.039) (0.091) (0.090) (0.057) (0.069)

Constant 0.300∗∗∗ 0.000 −0.107 −0.285∗

(0.107) (0.124) (0.092) (0.163)

Observations 1,657 1,657 234 234 1,657 1,657
R2 0.420 0.424 0.389 0.388 0.406 0.418

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 6: Balance results for CBPS

Covs Diff Unm Bal Test Unm Diff Match Bal Test Match

1 CTY tot pop 0.320 Not Balanced, >0.05 0 Balanced, <0.05
2 CTY Old age dep ratio 0.240 Not Balanced, >0.05 0.110 Not Balanced, >0.05
3 CTY Bachelor s degree 0.370 Not Balanced, >0.05 0.010 Balanced, <0.05
4 CTY Female hher no husbandhh -0.410 Not Balanced, >0.05 -0.050 Balanced, <0.05
5 CTY Md inc hhs 0.370 Not Balanced, >0.05 0.010 Balanced, <0.05
6 CTY Manufactur -0.690 Not Balanced, >0.05 -0.020 Balanced, <0.05
7 CTY Speak only English -0.300 Not Balanced, >0.05 0.010 Balanced, <0.05
8 CTY Below poverty level AGE 18 64 -0.160 Not Balanced, >0.05 -0.030 Balanced, <0.05
9 CTY White 0.250 Not Balanced, >0.05 0.010 Balanced, <0.05
10 CTY Labor Force Part Rate pop 16 over -0.100 Not Balanced, >0.05 -0.070 Not Balanced, >0.05
11 CTY Unem rate pop 16 over 0.140 Not Balanced, >0.05 0 Balanced, <0.05
12 CTY POPPCT RURAL -0.770 Not Balanced, >0.05 0 Balanced, <0.05

• Median household income

• % speak only English

• County unemployment rate

• % White

These choices reduce the number of total observations to 152 but yield substantively
and statistically similar results to our main findings, as illustrated in Table 7. The balance
test results are visualized in Figure 9.

With counties nested within DMAs and states, our data facilitate multilevel models as
an alternative to standard linear regression analyses, as well as allowing for more rigorous
fixed effects at the DMA or state level. Per our PAP we implement both in examining the
results of March 17th in Figure 10 which summarizes the impact of different fixed effects /
mixed effects, producing noisier but still negative estimates for most checks.

Diff-in-Diff Over Time

We summarize the descriptive difference-in-differences for March 1st, March 3rd, and
March 10th in the plots below. As illustrated, prior to Super Tuesday, counties that would
become exposed were more supportive of Sanders than counties that would remain in control
over the period of analysis (although the general shift was still away from Sanders relative
to 2016). In addition, the March 17th primary voters in exposed counties also shifted less
away from Sanders compared to the control counties.
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Table 7: Main Results Estimated with CEM instead of nearest neighbor matching

Dependent variable:

bsc.bin bsc.cont mtc.bin mtc.cont wgt.bin wgt.cont

(1) (2) (3) (4) (5) (6)

Treatbin −0.392 −0.924∗∗ −0.531∗∗

(0.262) (0.408) (0.252)

Treatcont −0.107∗∗∗ −0.257∗∗∗ −0.114∗∗∗

(0.014) (0.029) (0.011)

Bachelor’s degree −0.178∗∗∗ −0.181∗∗∗ −0.080 −0.118 −0.031 −0.011
(0.042) (0.041) (0.100) (0.114) (0.065) (0.061)

Md inc HH −0.018 −0.015 −0.123 −0.064 −0.069 −0.044
(0.049) (0.049) (0.093) (0.118) (0.066) (0.070)

Speak only english −0.301∗∗∗ −0.293∗∗∗ −0.071 −0.090 −0.329∗∗∗ −0.320∗∗∗

(0.051) (0.051) (0.091) (0.097) (0.063) (0.059)

White −0.292∗∗∗ −0.290∗∗∗ −0.230∗∗ −0.243∗∗ −0.313∗∗∗ −0.309∗∗∗

(0.059) (0.059) (0.104) (0.105) (0.055) (0.055)

Unem rate 0.117∗∗ 0.118∗∗ 0.181∗∗ 0.171∗∗ 0.164∗∗∗ 0.180∗∗∗

(0.049) (0.048) (0.072) (0.075) (0.060) (0.061)

Old age dep ratio −0.042 −0.048 −0.092 −0.075 0.009 0.013
(0.042) (0.041) (0.078) (0.076) (0.044) (0.031)

Constant 0.175 −0.009 −0.011 −0.213
(0.118) (0.128) (0.077) (0.156)

Observations 1,657 1,657 219 219 1,657 1,657
R2 0.363 0.366 0.315 0.258 0.373 0.386

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure 9: Balance performance across 6 covariates using CEM (Blackwell et al., 2009).

Geographic Units of Treatment

Our main findings define treatment as a function of the local media market in which
a county resides. The intuition is that, as the virus was initially spreading, local media was
more likely to report on the virus when cases appeared in their market. However, by March
17th news about the virus was a constant fixture on national stations, suggesting that the
DMA would no longer be an appropriate border by which to define exposure to the fear and
uncertainty generated by the outbreak. To the extent that larger units grew more salient as
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Figure 10: Estimates subject to different choices of fixed (red) and mixed (blue) effects.

overall coverage of the outbreak increased, we compare the estimates generated by defining
the virus at the county, the DMA, and the state in Figure 12. As illustrated, aggregating
at smaller geographic units produces null to positive results when defining the outbreak as
starting after March 10th. Conversely, the negative findings persist when defining treatment
assignment at the state level, although this unit appears too large for the earlier days of the
outbreak when local news sources would be more appropriate for transmitting information
and uncertainty.

28

C
ov

id
 E

co
no

m
ic

s 
3,

 1
0 

A
pr

il 
20

20
: 5

4-
84



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

−15

−10

−5

0

Pre Post

S
an

de
rs

_p
ct

_c
hg

as.factor(treated)

0

1

−20

−15

−10

−5

0

Pre Post

S
an

de
rs

_p
ct

_c
hg

as.factor(treated)

0

1

−20

−15

−10

−5

0

Pre Post

S
an

de
rs

_p
ct

_c
hg

as.factor(treated)

0

1

Figure 11: Descriptive DID data for outbreak dates of March 1st, March 3rd, and March
10th
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Figure 12: Matching estimates for impact of exposure on the change in Sanders’ vote share
when treatment is defined at the level of the county (left plot), the DMA (center plot), or
at the state (right plot).

Deaths

The main results use confirmed cases of the virus to define treatment. However, we also
have data on deaths due to COVID-19. We reproduce our main table, replacing confirmed
cases with deaths, and find even stronger results, as illustrated in Table 8.

The associated descriptive statistics are presented in Figure 13.
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Table 8: Relationship between Sanders vote share and COVID-19 Deaths

Dependent variable: ∆ Sanders Vote Share 2020-2016
Basic Matched Weighted Diff-in-Diff

Bin Cont Bin Cont Bin Cont Basic Match Weight

(1) (2) (3) (4) (5) (6) (7) (8) (9)

treatBin −0.922∗∗∗ −0.995∗∗∗ −0.922∗∗∗

(0.191) (0.250) (0.185)

treatCont −0.124∗∗∗ −0.424∗∗∗ −0.124∗∗∗

(0.010) (0.078) (0.011)

treatGroup −0.113 0.424 −0.030
(0.092) (0.344) (0.094)

post −0.203∗ −0.116 −0.161
(0.116) (0.305) (0.136)

Tot Pop 0.021 0.023 0.097 0.089 0.001 0.001 0.028 0.106 0.008
(0.025) (0.025) (0.145) (0.143) (0.024) (0.025) (0.028) (0.148) (0.028)

Old Age Dep 0.024 0.018 0.111 0.228 0.058 0.057 0.023 0.109 0.063∗

(0.049) (0.049) (0.264) (0.200) (0.037) (0.037) (0.050) (0.264) (0.037)

Bach Deg −0.065 −0.063 0.125 0.066 −0.042 −0.040 −0.070 0.147 −0.053
(0.051) (0.051) (0.227) (0.217) (0.061) (0.061) (0.053) (0.240) (0.065)

Female HH 0.369∗∗∗ 0.383∗∗∗ 0.176 0.216∗ 0.321∗∗∗ 0.319∗∗∗ 0.366∗∗∗ 0.173 0.303∗∗∗

(0.054) (0.053) (0.157) (0.126) (0.083) (0.083) (0.054) (0.161) (0.089)

Med HH Inc 0.079 0.084 −0.172 0.060 0.053 0.058 0.082 −0.223 0.054
(0.065) (0.065) (0.281) (0.239) (0.062) (0.061) (0.064) (0.297) (0.062)

% Manuf 0.120∗∗ 0.127∗∗ 0.009 0.085 0.089∗ 0.092∗ 0.121∗∗ 0.018 0.094∗

(0.050) (0.050) (0.113) (0.097) (0.054) (0.053) (0.050) (0.114) (0.052)

Speak English −0.321∗∗∗ −0.320∗∗∗ −0.273∗ −0.223 −0.416∗∗∗ −0.415∗∗∗ −0.301∗∗∗ −0.272∗ −0.398∗∗∗

(0.043) (0.043) (0.139) (0.152) (0.055) (0.055) (0.048) (0.143) (0.064)

Below Pov 0.005 −0.002 −0.010 0.054 0.041 0.039 0.011 −0.032 0.042
(0.040) (0.041) (0.222) (0.187) (0.045) (0.046) (0.039) (0.227) (0.047)

% White −0.116∗ −0.113∗ 0.078 0.097 −0.083 −0.084 −0.096 0.073 −0.071
(0.066) (0.066) (0.172) (0.175) (0.101) (0.101) (0.064) (0.175) (0.100)

LFPR −0.079∗ −0.074∗ −0.113 −0.022 −0.063 −0.064 −0.082∗∗ −0.099 −0.066
(0.043) (0.043) (0.221) (0.200) (0.049) (0.049) (0.041) (0.217) (0.049)

Unemp Rate 0.036 0.038 0.049 0.077 0.048 0.051 0.054 0.057 0.066
(0.043) (0.042) (0.065) (0.058) (0.047) (0.047) (0.041) (0.066) (0.047)

% Rural 0.022 0.034 −0.147 −0.110 −0.006 −0.007 0.011 −0.159 −0.030
(0.035) (0.035) (0.121) (0.124) (0.049) (0.049) (0.037) (0.124) (0.056)

trtGrp:post −0.677∗∗∗ −1.326∗∗∗ −0.791∗∗∗

(0.210) (0.415) (0.219)

Constant 0.027 0.000 0.498∗∗∗ 0.000 −0.059 −0.086 0.091 0.521∗∗ −0.015
(0.063) (0.062) (0.155) (0.170) (0.085) (0.086) (0.087) (0.240) (0.100)

Observations 1,657 1,657 96 96 1,657 1,657 1,657 96 1,657

R2 0.406 0.398 0.394 0.306 0.349 0.338 0.414 0.400 0.355

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure 13: Change in support for Sanders (y-axis) between 2016 and 2020 by exposure to
COVID-19 deaths in the DMA prior to and following the outbreak (dated to after March
3rd, x-axis).
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The health crisis caused by the outbreak of the Covid-19 virus has led many 
countries to implement drastic measures of social distancing. By reducing the 
quantity of labour, social distancing in turn leads to a drop in output which 
is difficult to quantify without taking into account relationships between 
sectors. Starting from a standard model of production networks, we analyse 
the sectoral effects of the shock in the case of France. We estimate that six weeks 
of social distancing brings GDP down by 5.6%. Apart from sectors directly 
impacted by social distancing measures, those whose value-added decreases 
the most are upstream sectors, i.e. sectors most distant from final demand. The 
same exercise is carried out for other European countries, taking into account 
national differences in sectoral composition and propensity to telework. 
Finally, we analyse the economic impact of phasing out social distancing by 
sector, region or age group.
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Sectoral effects of social distancing

Jean-Noël Barrot, Basile Grassi, and Julien Sauvagnat 1

Work in progress

The health crisis caused by the outbreak of the Covid-19 virus leads many countries to imple-
ment drastic measures of social distancing. By reducing the quantity of labor, social distancing
in turn leads to a drop in output which is difficult to quantify without taking into account
relationships between sectors. Starting from a standard model of production networks, we
analyze the sectoral effects of the shock in the case of France. We estimate that six weeks of
social distancing brings GDP down by 5.6%. Apart from sectors directly concerned by social
distancing measures, those whose value added decreases the most are upstream sectors, i.e.
sectors most distant from final demand. The same exercise is carried out for other European
countries, taking into account national differences in sectoral composition and propensity to
telework. Finally, we analyze the economic impact of phasing out social distancing by sector,
region or age group.

Modern economies are characterized by the many interdependencies formed by companies
in their production processes. These interdependencies are well identified in the literature as
facilitating the propagation of non-systemic shocks (Barrot and Sauvagnat, 2016) and their
aggregation (Acemoglu et al., 2012; Baqaee and Farhi, 2019), with applications for public
policies (Grassi and Sauvagnat, 2019). For a recent review, see Carvalho and Tahbaz-Salehi
(2018). Analyzing the effect of the social distancing rules implemented to curb the spread of
the Covid-19 virus requires to estimate its effects on the active workforce, and to measure
its impact across the production network 2.

Effect of social distancing on the workforce

Administrative closings The decree of March 14, 2020 prohibits certain categories of
establishments from opening to the public 3. Exceptions are granted by the decree of March
15, 2020, and relate in particular to the food and basic necessities trade. To estimate the
reduction in active workforce due to administrative closings in each sector, we proceed as
follows. Starting from the finest sector classification, the NAF rev. 2 in 732 sector classi-
fication, we identify the sectors corresponding to the decree of March 14, 2020, for which

1. Jean-Noël Barrot is affiliated with HEC Paris (barrot@hec.fr). Basile Grassi (ba-
sile.grassi@unibocconi.it) and Julien Sauvagnat (julien.sauvagnat@unibocconi.it) are affiliated with
Bocconi.

2. In what follows, we abstract from economic policy initiatives implemented in response to the crisis.
3. Hearing rooms, conferences, meetings, shows or for multiple use ; Sales stores and Shopping centers,

except for their delivery and order picking activities ; Restaurants and drinking places, except for their ta-
keaway delivery and sales activities, room service in hotel restaurants and bars and contract catering ; Dance
halls and play rooms ; Libraries, documentation centers ; Exhibition halls ; Covered sports establishments ;
Museums ; Marquees, tents and structures ; Outdoor establishments ; Educational, educational, training es-
tablishments, holiday centers, leisure centers without accommodation.
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we consider that the active workforce is zero. By aggregation, using the number of workers
by sector in the 2016 census data available on the INSEE website, we obtain the share of
the inactive workforce for each of the 38 sectors of the aggregated NAF rev. 2 classification.
The share of the total workforce affected by administrative closings stands at 10.9% and is
concentrated in directly affected sectors : hotel and restaurants, arts and leisure, wholesale
and retail, social work.

Closures of nurseries, schools, secondary schools and high schools In addition, all
nurseries, schools, colleges and high schools were closed from March 16, 2020, in accordance
with the decree of March 14, 2020. To estimate the effects on the workforce in each sector,
we use data from the census to identify, in each of the 38 sectors of NAF rev. 2, the share
of working people with dependent children under 16 and therefore forced into inactivity 4.
The share of the total workforce affected by childcare caused by the closings of nurseries,
secondary schools and high schools stands at 13.2% 5, and varies, if we leave aside the sectors
concerned by administrative closings and the health sector, from 11.7% (Agriculture) to
19.4% (Pharmaceuticals).

Confinement On the other hand, to prevent the spread of the Covid-19 virus, traffic
restrictions are imposed, as well as the strict compliance with a safety distance of one meter
between each individual. So that these rules do not lead to the shut down of business, the
Minister of Labor asked firms to facilitate remote work as much as possible (telework), and
urged companies to bring together their Social and Economic Committee (CSE) to adapt
working conditions to health guidelines. In the absence of better data, the share of the active
population in each sector likely to continue working at home is estimated using data from
the European Community survey on the use of ICT and electronic commerce in businesses
carried out by INSEE for Eurostat on a sample of 12,500 companies. This provides, for each
sector, the share of employees of companies with more than 10 employees using a portable
device provided by the company, connected to the Internet via the network of mobile phones
(laptop, smartphone, tablet, etc.) in 2019. This stands at 32%, which is consistent with some
recent telework surveys 6. However, confinement should lead companies to increase their use
of telework. The ICT survey also provides the share of employees of companies with more
than 10 employees using a computer (including a portable device) with internet access for
professional use (fixed or mobile connection), which averages 62%. We note that this indicator
is significantly correlated (correlation = 0.5) with the share of employees in telework in 2017
estimated by DARES 7. Some sectors being excluded from the survey (agriculture, financial
services, public administration), the missing variable is imputed by applying the average ratio
between the survey variable and the share of employees in telework estimated by DARES. In

4. More specifically, we consider that an active person has dependent children if there is not another
inactive person in the household, who could take care of them. If there are several active adults in the
household, we consider the drop in activity to be evenly distributed among these adults. We exclude from
this calculation those who are forced to inactivity because of administrative closings, and health workers
whose children are taken care of in the school system.

5. Sadique et al (2008) obtain a similar proportion based on English data.
6. See for example the 2020 Telework study by Malakoff Humanis, March 2020
7. DARES Analyses, November 2019, Number 051
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the limit case of absolute confinement, only these employees could continue to work, either
because they can work at home, or because it is probably easier to reorganize their work
environment in accordance with social distancing rules.

Figure 1
Decrease in active workforce caused by social distancing measures

This figure shows the effects of social distancing measures on the workforce by sector (in %). Blue bars represent the decline
in the active workforce due to administrative closings. Red bars, the additional effect linked to school closings. Green bars, the
residual effect related to confinement.
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Cumulative effect By combining the effect of administrative closings, that of childcare
imposed by the closings of nurseries, schools, colleges and high schools, and that of strict
confinement allowing only people usually working with a computer to continue to do so, we
obtain an overall drop in the active workforce of 52% 8. The detail by sector is presented in
Figure 1. The effect is broken down according to the origin of the shock. In blue, the effect
of administrative closings ; in red, the additional effect of school closings ; and in green, the
residual effect of confinement. Unsurprisingly, “arts and leisure” and “hotel restaurants” are

8. This number is remarkably close to estimates by Google of the drop in workplace mobility, -56% relative
to baseline in France, see COVID-19 Community Mobility Report as of March 29, 2020

3

C
ov

id
 E

co
no

m
ic

s 
3,

 1
0 

A
pr

il 
20

20
: 8

5-
10

2



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

the hardest hit, due to administrative closings. Next comes “agriculture” or “business servi-
ces”, where the share of the workforce who does not work on a computer is high. Conversely,
“technical activities ”, “telecommunications ” or “computer services ” are relatively spared.

Description of the production network

Companies, and consequently the sectors of the French economy, are linked to each other
through the network of customer-supplier relationships. There is no data to trace these
business-to-business relationships. We therefore rely on the input-output table produced by
INSEE, which describes and synthesizes transactions in goods and services in product and
branch of activity. Figure 2 shows the structure of the French production network according
to the 38 branches of activity of the NAF rev. 2 for 2015. 9

In the first panel, each column represents the production of a sector. Each line represents
the intermediate consumption of a sector, i.e. the inputs of its production process. In short,
the column sectors are the suppliers, the row sectors are the customers. Each box in the
table gives the intensity of use by a sector (on the column) of the input (on the row) in
its production process. The darker the blue, the more quantitatively important the input.
We thus verify that for the row (client sector) “hotel restaurants”, the column (supplier
sector) “food” is quantitatively important. We note that certain supplier sectors, in columns,
contribute significant inputs from a large number of sectors. These are “business services”,
“ consulting”, and “ wholesale and retail ” activities.

In the second panel of Figure 2 are represented the links between sectors. Each point
represents a sector, and its size is proportional to the total volume of its inputs. Each
line represents a relation between a supplier sector and a client sector, and its width is
proportional to the share of the input in the total of the inputs of the client. This graph
highlights the chains of links : thus, the “agriculture” sector is an important input of the
“food” sector, itself an important input of the “hotel restaurants” sector.

Finally, we report in Table 3 two key network statistics, Bonacich-Katz centrality and
upstreamness, for each sector of the economy. The centrality of a sector measures the im-
portance as a supplier to the economy, whereas the upstreamness measures the number of
nodes between a given sector and the final demand.

Description of the model

To analyze the effect of social distancing on GDP and on the value added of each sector,
we construct a standard model of production networks. Each sector produces a good by
using labor and intermediate consumption produced by the other sectors, and by choosing
the quantities so as to maximize its profit. Households consume goods produced by each
sector 10, and provide a fixed amount of labor to each sector so as to maximize their utility.

The economy’s response to the shock depends on two parameters. The elasticity of sub-
stitution between goods drives the responses of household consumption to changes in relative
prices. If the elasticity is greater than 1, an increase in the price of a given good leads to

9. We report the full description of each branch in Table 2.
10. In such a closed economy model, household consumption includes public spending, investment and

exports
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5

Figure 2
The French production network

This figure shows the structure of the French production network according to the 38 branches of activity of the NAF rev. 2.
In the first panel, each column represents the production of a sector. Each line represents the intermediate consumption of a
sector. In the second panel, each point represents a sector, and its size is proportional to the total volume of its inputs. Each
line represents a relation between a supplier sector and a client sector, and its width is proportional to the share of the input
in the total of the inputs of the customer.
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a decrease in its share in the household consumption basket, and vice versa. Similarly, the
elasticity of substitution between intermediates describes the response of sectors to a change
in the relative prices of the inputs they use. The higher it is, the more a sector can substitute
inputs between them. This elasticity is lower when the horizon is short - it can be difficult
to quickly substitute inputs between them -, and the level of aggregation is high - it is easier
for a company to change supplier, than for a sector to do without an upstream sector. We
rely on the literature to calibrate the elasticity of substitution between final goods at 3, and
the elasticity of substitution between intermediate inputs at 0.5. We check that the results
are robust to alternative values.

The model is useful for estimating the effect of the supply shock linked to social distan-
cing, and its propagation throughout the production network. It does not take into account
international trade 11. Economic shocks affecting foreign countries with domestic repercus-
sions are not quantified here. Furthermore, the model does not integrate the effect of au-
tomatic stabilizers and economic support policies announced in response to the crisis, such
as the extension of partial unemployment, the suspension of contributions and tax charges,
or the solidarity fund for the self-employed and very small businesses in France. The model
also does not integrate the effects of possible demand shocks caused by the health crisis :
increased demand for medical and surgical equipment, or the consumption of digital services.
The model also ignores possible changes in the structure of consumption (or preference pa-
rameters in the utility function) of households linked to the consequences of the outbreak of
the virus. Finally, it ignores the amplification effects linked to potential business bankrupt-
cies, the destruction of customer-supplier relationships, and more generally the destruction
of companies’ relational or organizational capital.

Effect of social distancing on GDP

Table 1
Effect of 6 weeks of social distancing on GDP

Administrative Administrative Administrative
closings closings closings

+ School + School
closings closings

+ Confinement

GDP growth -0.9% -2.5% -5.6%

The model makes it possible to estimate the effect of social distancing on the value added

11. The effects of the shock in China on the French economy is studied, for example, by Gerschel et al.
(2020).
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of each sector, the weighted sum of which forms GDP. The results are presented for a period
of 6 weeks. The fall in annual GDP is -5.6% 12 . We decompose this figure according to
the origin of the shock, and present the result in Table 1. Administrative closings cause a
decrease of 0.9%. When we add the closings of nurseries, colleges and high schools, the drop
is 2.5%. The residual difference, ie 3.1 percentage points, is explained by confinement.

Figure 3
Value added growth for 6 weeks of social distancing (%)

This figure shows the effects of social distancing on value added growth for each sector (in %). Blue bars represent the decline
in the active workforce due to administrative closings. Red bars, the additional effect linked to school closings. Green bars, the
residual effect linked to confinement.
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The model makes it possible to estimate the impact of the shock separately for each
sector. Figure 3 shows the effect of six weeks of social distancing on annual value added
growth in each sector. The effect is broken down according to the origin of the shock. In
blue, the effect of administrative closings ; in red, the additional effect of school closings ; and
in green, the residual effect of confinement. The drop varies from -8.8% to -4.1% depending on

12. This estimate is higher than that presented by INSEE in its Conjoncture Point of March 26, 2020 from
contemporary shock data, which finds 3% for a month of social distancing, and to that presented by the
OFCE in its Policy Brief of March 30, 2020. This difference can be explained by the fact that the model
does not take into account automatic stabilizers and support policies.
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the sector. Among the sectors most affected, are some of those directly impacted by social
distancing measures, such as “arts and leisure” (-7.7%) and “hotel restaurants” (-6.8%).
However, among the most affected sectors are also upstream ones, i.e. those most distant from
final demand, such as “mining” (-8.8%), and “technical activities” (-7.6%), “consulting” (-
6.2%) or “utilities” (-6.0%). Thus, if the downstream sectors seem more directly disturbed by
administrative closings in terms of active workforce, upstream sectors suffer most significantly
in terms of value added.

Extension to other European countries

Figure 4
GDP drop by country for 6 weeks of social distancing

This figure shows the effects of social distancing on the GDP growth of European countries (in %). We assume that all countries
apply the same restrictions, and that social distancing is in place for 6 weeks in each country. Only the sectoral composition
and the propensity to telework vary.
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We next analyze the effect that social distancing would have on other European countries,
taking into account only national differences in sectoral composition, and in the telework pro-
pensity. It is therefore assumed that all countries take the same decisions on administrative
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closings, closings of schools and confinement 13. The structure of the production network in
54 branches is obtained from the ”World Input-Output” database (WIOD, version 2016),
which provides for each country the 2014 input-output table. The propensity of each sector in
each country to telework comes from the community survey on the use of ICT and electronic
commerce in businesses described above.

The results are presented in Figure 4. The GDP drops on average by 6.6% in the sample,
for six weeks of social distancing 14. The fall in GDP ranges from 4.3% (Denmark) to 9.2%
(Bulgaria). These differences are partly explained by the sectoral composition, and partly
by the propensity to telework, as shown in Figure 8 which shows the correlation 15 between
propensity to telework and decline in GDP.

Progressive phasing out of social distancing

Phasing out of social distancing is anticipated to be implemented progressively. The
model allows us to predict the marginal effect on GDP that phasing out would have on each
sector, region or age group, taken in isolation. We consider each sector (or region, or age
group) one after the other assuming that social distancing is lifted after 4 weeks instead of
6, and we measure the effect on marginal on GDP. We then normalize the implied GDP
in euros by the number of released workers, which gives an approximation of the marginal
benefit per worker of phasing out social distancing. The results are presented in Figure 5-7.
The effect on GDP (Panel A) varies by a factor of 4 across sectors and across regions, but is
relatively stable by age group. The marginal effect per worker (Panel B) is stable by region
and age group, but varies very strongly by sector.

These results must be interpreted with caution, and within the limits of the model’s
assumptions. They correspond to the effect of the decline in the workforce linked to social
distancing and do not take into account international trade or public policies undertaken
to support the economy. They describe the supply side response at the sectoral level and
make it possible to identify the most affected sectors. They do not in any way challenge
the importance of social distancing, which is well identified by the medical literature as an
effective means of slowing down the epidemic propagation, whose human, social and economic
costs are considerable.

13. All countries in the sample closed their schools, but not all of them imposed administrative closings
and confinement.

14. We note that France undergoes a drop in GDP of 5.4%, very close to the 5.6% estimated above from
38 sectors, instead of 54.

15. A 10 percentage points increase in telework propensity increases GDP by 1%.
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Figure 5
Effect on GDP of differentiated phasing out by sector

This figure shows the effects on GDP of phasing out social distancing in each sector individually, after 4 weeks instead of 6.
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Figure 6
Effect on GDP of differentiated phasing out by region

This figure shows the effects on GDP of phasing out social distancing in each region individually, after 4 weeks instead of 6.
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Figure 7
Effect on GDP of differentiated phasing out by age group

This figure shows the effects on GDP of of phasing out social distancing in age group individually, after 4 weeks instead of 6.
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Table 2

List of Sectors

CODE A38 ACRONYM A38 DESCRIPTION A38

AZ AGRICULTURE agriculture, forestry and fishing
BZ MINING mining and quarrying
CA FOOD manufacture of food products, beverages and tobacco products
CB TEXTILES manufacture of textiles, wearing apparel and leather products
CC WOOD manufacture of wood and paper products, and printing
CD COKE AND PETROLEUM manufacture of coke and refined petroleum products
CE CHEMICALS manufacture of chemicals and chemical products
CF PHARMACEUTICALS manufacture of basic pharmaceutical products and pharmaceutical preparations
CG PLASTIC manufacture of rubber and plastics products, and other non-metallic mineral products
CH METAL manufacture of basic metals and fabricated metal products, except machinery and equipment
CI COMPUTERS MANUF manufacture of computer, electronic and optical products
CJ ELECTRICAL EQUIPMENT manufacture of electrical equipment
CK MACHINE AND EQUIPMENT manufacture of machinery and equipment n.e.c.
CL TRANSPORT EQUIPMENT manufacture of transport equipment
CM FURNITURE manufacture of furniture ; other manufacturing ; repair and installation of machinery and equipment
DZ ELECTRICITY AND GAS electricity, gas, steam and air conditioning supply
EZ UTILITIES water supply ; sewerage, waste management and remediation activities
FZ CONSTRUCTION construction
GZ WHOLESALE AND RETAIL wholesale and retail trade, repair of motor vehicles and motorcycles
HZ TRANSPORT LOGISTICS transportation and storage
IZ HOTEL RESTAURANTS accommodation and food service activities
JA AUDIOVISUAL publishing, audiovisual and broadcasting activities
JB TELECOMMUNICATIONS telecommunications
JC IT SERVICES computer programming, consultancy and related activities ; information service activities
KZ FINANCE AND INSURANCE financial and insurance activities
LZ REAL ESTATE real estate activities
MA CONSULTING legal and accounting activities ; activities of head offices ; management consultancy activities ;

architecture and engineering activities ; technical testing and analysis
MB SCIENTIFIC RESEARCH scientific research and development
MC TECHNICAL ACTIVITIES advertising and market research ; other professional, scientific and technical activities ; veterinary activities
NZ BUSINESS SERVICES administrative and support service activities
OZ PUBLIC ADMIN public administration and defence ; compulsory social security
PZ EDUCATION education
QA HUMAN HEALTH human health activities
QB SOCIAL WORK social work activities
RZ ARTS AND LEISURE arts, entertainment and recreation
SZ OTHER SERVICES other service activities
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Table 3
Sector characteristics and network statistics

(1) (2) (3) (4) (5)

Secteur Sector Characteristics Network Statistics

Final Demand Employment Upstreamness Network Centrality

AGRICULTURE 2.7% 1.1% 2.09 0.032
MINING 0.1% 0.0% 2.43 0.002
FOOD 2.3% 4.6% 1.52 0.070
TEXTILES 0.4% 0.5% 1.43 0.007
WOOD 0.8% 0.4% 2.27 0.015
COKE AND PETROLEUM 0.0% 0.9% 1.69 0.015
CHEMICALS 0.5% 1.9% 1.47 0.027
PHARMACEUTICALS 0.3% 1.0% 1.04 0.011
PLASTIC 1.0% 0.7% 2.04 0.021
METAL 1.5% 1.3% 1.91 0.033
COMPUTERS MANUF 0.5% 0.9% 1.09 0.010
ELECTRICAL EQUIPMENT 0.4% 0.7% 1.28 0.008
MACHINE AND EQUIPMENT 0.7% 1.3% 1.25 0.015
TRANSPORT EQUIPMENT 1.3% 4.6% 1.14 0.052
FURNITURE 1.1% 1.7% 1.59 0.029
ELECTRICITY AND GAS 0.7% 1.4% 2.36 0.043
UTILITIES 0.7% 0.6% 2.17 0.020
CONSTRUCTION 6.5% 8.4% 1.35 0.112
WHOLESALE AND RETAIL 12.8% 11.8% 1.46 0.167
TRANSPORT AND LOGISTICS 5.1% 3.6% 1.92 0.080
HOTEL RESTAURANTS 4.0% 3.0% 1.48 0.042
AUDIOVISUAL 0.9% 1.3% 1.75 0.022
TELECOMMUNICATIONS 0.5% 1.0% 2.05 0.022
IT SERVICES 1.6% 2.2% 1.61 0.034
FINANCE AND INSURANCE 3.5% 2.7% 2.36 0.091
REAL ESTATE 1.4% 10.1% 1.37 0.128
CONSULTING 4.4% 2.5% 2.40 0.097
SCIENTIFIC RESEARCH 0.7% 2.4% 1.03 0.025
TECHNICAL ACTIVITIES 1.0% 0.3% 2.33 0.014
BUSINESS SERVICES 5.7% 2.0% 2.28 0.077
PUBLIC ADMIN 9.8% 7.8% 1.00 0.078
EDUCATION 7.7% 4.4% 1.26 0.053
HUMAN HEALTH 7.1% 6.2% 1.06 0.065
SOCIAL WORK 7.6% 3.3% 1.00 0.033
ARTS AND LEISURE 1.6% 1.7% 1.20 0.020
OTHER SERVICES 3.0% 1.3% 1.40 0.017

Moyenne 2.8% 2.8% 1.64 0.044
Min 0.0% 0.0% 1.00 0.002
Max 12.8% 11.8% 2.43 0.167
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Figure 8
Cross-country correlation between telework and GDP change

This graph shows the correlation between the share of persons employed using computers with access to Internet and the change
in GDP (in %) across 15 European countries.
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We measure the economic risk of Covid-19 at a geo-spatially detailed resolution. 
In addition to data about the current prevalence of confirmed cases, we use 
data from 2014-2018 to compute measures for exposure, vulnerability, and 
resilience of the local economy to the shock of the epidemic. Using a battery 
of proxies for these four concepts, we calculate the hazard and the principal 
components of exposure and vulnerability to it, and of the economy’s 
resilience (i.e., its ability of the recover rapidly from the shock). We find that 
the economic risk of this pandemic is particularly high in most of Africa, the 
Indian subcontinent, the Persian Gulf, and Southeast Asia. These results are 
consistent when comparing an ad hoc equal weighting algorithm for the four 
components of the index, an algorithm that assumes equal hazard for all 
countries, and one based on an estimated weights using previous aggregated 
disability-adjusted life years losses associated with communicable diseases.
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Introduction 

The economic risk of an epidemic, any epidemic, is very distinct from the health (morbidity 
and mortality) risk. The basic framework that assesses disaster risk is typically constructed 
around four concepts – hazard, exposure, vulnerability and resilience – and it is the 
interaction of these that leads to the economic consequences. The hazard in these 
frameworks is the natural trigger – in the present circumstances, it is the SARS-Cov-2 virus 
which causes Covid-19. Since the economic risk is determined not only by the hazard but also 
by the exposure, vulnerability and resilience, this risk has plausibly very different spatial 
variability than the spread of the virus.  

Even with no significant case load or mortality associated with it, the epidemic can lead to 
very adverse changes within and outside an affected economy that can lead to dramatic 
economic effects. Given the paucity of data on epidemic cases in the recent past (the period 
for which comprehensive economic and demographic records are available) and the 
unprecedented nature of this event, our aim here is not to precisely measure the likely 
consequence of this pandemic, but rather to evaluate comparatively where the economic risk 
of Covid-19 is currently concentrated using several alternative algorithms. 

Our risk measure is premised on the observation that a disaster, including an epidemic, occurs 
when a hazard (in this case, the disease) interacts with an exposed population that is 
vulnerable to this hazard, thus causing harm to people. Epidemics always arise out of a natural 
pathogen (very often zoonotic) but the pathogen by itself does not create the epidemic, and 
definitely not its economic consequences. For that, the pathogen must encounter a society, 
people and an economy that are both exposed and vulnerable to it. Resilience, in this 
framework, is conceptualised and measured as the ability of the economy to bounce back 
given the magnitude of the shock (generated by the intersection of the hazard, exposure, and 
vulnerability).1 The degree of resilience in a system (in this case, the economy) is thus 
determined by the speed in which the recovery process occurs and when the system reverts 
back to its pre-shock level (i.e., when full recovery is achieved). 

As defined by the UN Office for Disaster Risk Reduction, a disaster is “a serious disruption of 
the functioning of a community or a society at any scale due to hazardous events interacting 
with conditions of exposure, vulnerability and capacity, leading to one or more of the 
following: human, material, economic and environmental losses and impacts. The effect of 
the disaster can be immediate and localised, but is often widespread and could last for a long 
period of time” (UNDRR, 2017).  

Exposure in the UNDRR definition refers to the population and the economic activity that is 
located in areas that are being exposed to the pathogen or that is indirectly exposed to the 
changing behaviour that is induced by the presence of this pathogen (e.g., Epstein, 2009). 
Vulnerability, in this case, refers to the ability of the pathogen to adversely affect the exposed 

 
1 An alternative term that is sometimes used similarly to ‘resilience’ is ‘capacity’ [for recovery]. We prefer the 
term ‘resilience’ (or ‘socio-economic resilience’) as it is defined by Hallegatte (2014) and the World Bank 
(2018). 
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economy. A higher degree of vulnerability will lead to a more adverse outcome for the 
economy, given the same exposure to the SARS-Cov-2 virus.2  

Over time, the economic losses will depend on the depth of the shock and on the economy’s 
resilience (its ability to bounce back). A more resilient economy, in this framework, is one that 
manages to minimise the post-shock cumulative loss of income during the recovery process 
for a given size of the shock (Hallegatte, 2014).3 As Prager et al. (2017) note, resilience policies 
are often not really plausible to pursue during the rapid phase of the spread of the epidemic. 
What is more plausible is to make up for lost production once the epidemic has abated, and 
potentially prepare the economy for the recovery period while the epidemic is still ongoing 
(as many governments are trying to do now for Covid-19).4 The ability to implement such 
policies, as determined by both financial and institutional capacity, is therefore an important 
determinant of economic resilience. 

In a previous paper (Noy et al., 2019), we analysed the economic risk of a generic epidemic. 
Here, instead of focusing on a generic emerging infectious disease event, we focus on Covid-
19 (Figure 1). SARS-Cov-2 fits perfectly the pattern of a zoonotic pathogen emerging from the 
interaction of a wild animal population with a food market that epidemiologists have been 
warning about (e.g., Allen et al., 2017). However, the economic characteristics of this 
unprecedented event are somewhat different (for example, the total collapse of the 
international tourism is unique) and we therefore modified our risk analysis to fit the new 
experience with Covid-19.  

 
Figure 1 Covid-19 hazard map (calculated as the ratio of the number of confirmed cases to population) 
Note: Data updated on 30 March 2020.  

 
2 These distinctions are always imperfect, and that is also the case for epidemics. Even the basic epidemiological 
parameter, R0, may be a function of the socio-economic environment, as the contact rate, the probability of 
transmission upon contact, and the duration of infection are all also determined by social factors (e.g., poverty 
or nutrition); see Janes et al. (2012). 
3 Prager et al. (2017), in their modelling of influenza in the United States use a somewhat broader definition of 
resilience. They define ‘economic resilience’ as the capacity “to maintain functionality and dampen business 
interruption losses in the aftermath of a disaster” (p. 6). 
4 See: https://www.imf.org/en/Topics/imf-and-covid19/Policy-Responses-to-Covid-19. 
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Measured at the level of grid cells, g, we model the risk associated with the economic impact 
of epidemics as a linear combination of hazard plus a local economy’s exposure and 
vulnerability to it, minus its resilience or ability to bounce back: 

!"#$!% =	(")*+*,-! 	+	(#/012#3,4! 	+	($53674,*8969:;! 	−	(%!4#96947=4!               (1) 

We collect a large group of sub-national and national measures from recent years (2014-2018) 
to proxy for exposure, vulnerability, and economic resilience. The selection of variables is 
based on the literature measuring disaster risk, as reviewed in Yonson and Noy (2018), and 
on the current experience of Covid-19. We then use principal component analysis (PCA) to 
compute a standardised index for each exposure, vulnerability, and resilience. Using the first 
component of exposure, vulnerability, and resilience index, in addition to the number of 
confirmed cases of Covid-19, we compute a risk index in relation to the economic risk of 
epidemics. In our simplest specifications, we assume 		"! 	= ""	 for all i and j; in alternative 
algorithms, we assume 		"$ 	= 0	(the hazard is equal for all countries), or we estimate the 
		"! 	based on a disability-adjusted life years (DALY)-based least-squares regression algorithm. 

Results 

Figure 2 shows descriptive information and principle component analysis (PCA) results of all 
variables we use to measure exposure, vulnerability and resilience. The principal component 
index is the output of linear combination of the original variables. We use the first principal 
component for each exposure, vulnerability and resilience index. As the first component 
accounts for most variation in the data and contribute the most explanation in the combining 
procedure. The proportion of eigenvalues indicates the explanatory importance of the factor, 
which are 4.0, 3.4, and 2.8 for exposure, vulnerability and resilience, respectively. Economic 
activities, demographic measures and infrastructure density all positively explain exposure. 
High-income areas with better healthcare quality (as measured by lower infant mortality, 
health spending, hospital infrastructure) are related to less vulnerable areas. Tourism areas 
and high numbers of the elder are associated with higher vulnerability. For resilience, areas 
with higher social and cultural disparity have a lower index. Countries with a lower ratio of 
government debt and higher expenditure are more resilient.  
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Figure 2 Descriptive data and principal component analysis (PCA) results  

Note: The lower and upper caps represent standard errors of each variable in the first component. 

We normalise all exposure, vulnerability, and resilience indices. Figure 3 presents the 
cumulative distribution of main results for hazard, exposure, vulnerability, resilience, and 
economic risk. For hazard, we use the number of confirmed cases of Covid-19 per 1 million 
people from the Worldometer website, which has the most frequently updated data. We 
calculate the economic risk by an equal-weight linear combination of the four indices.  
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Figure 3 The cumulative distribution of indices 

We find that the economic risk of epidemics is especially high in most of Latin America (except 
for the Southern Cone countries), most of Africa, South Asia, Iran, and much of Southeast Asia 
(Figure 4). Fundamentally, areas with the greatest exposure to the prevalence of Covid-19 
align with high economic risk. The economic risk is high in Africa and Southeast Asia, as these 
are the most vulnerable areas with low income and healthcare quality. Resilience, 
intentionally or otherwise, plays a role in reducing the economic risk from epidemics. For 
example, in Southern Cone countries (Argentina and Chile) resilience is higher than in 
neighbouring countries due to less fractionalised socio-cultural characteristics (lower ethnic 
and linguistic disparity) and higher incomes. Saudi Arabia and Russia have lower economic 
risks because their domestic economies are focused on huge amounts of (oil) exports, and 
hardly rely on tourism at all. 

In Figure 5, we assume that the hazard (the presence of the virus) is identical in all countries. 
This can be motivated either by the expectation that eventually, the spread of the virus will 
reach epidemic levels in all countries, or because of the widely held view that differences in 
the testing regimes account for a lot of the differences in the number of confirmed cases 
(probably especially relevant for low-income countries). As such, the assessment of the 
economic risk that is caused by this virus should not be based on the present known spread 
of the virus, but on its global potential. Besides some expected differences, however, the 
results presented in Figure 5 (uniform spread of the virus) and Figure 4 (hazard based on the 
current spread of the virus) are very similar. The only distinctive difference is that the 
countries of Southern Europe that have very high official infection rates (e.g., Italy and Spain) 
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are assessed to be a comparably lesser risk in Figure 5 (when we assume a uniform level of 
the hazard). 

 

 
Figure 4 Economic risk of Covid-19 using equation (1) with equal weights 

Notes: Observations are divided into five classes by Jenks natural breaks classification method, a data clustering 
method. The method optimally minimizes the average deviation from each class and maximises the deviation 
across classes.  

 
Figure 5 Economic risk of Covid-19 using a modified equation (1) with hazard calibrated so all countries have an 
equal hazard (all are susceptible to Covid-19) 

A less ad hoc weighting scheme, instead of equal weights as in Figures 4 and 5, relies on the 
DALY measure of overall disease burden. Since previous DALYs associated with communicable 
disease is the outcome of previous events, it could be a good source for understanding the 
interactions between the (mostly zoonotic) hazard and exposure, vulnerability, and resilience 
to it. DALYs are the sum of years lost due to ill-health, disability or premature death from 
communicable diseases. Weights for each of the four components are derived by ordinary 
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least squares regression with the country-level DALYs as the dependent variable, as in 
Equation 2 (we assign the same DALY value for all grid cells within each country): 

>?@A! =	B& + B")*+*,-! 	+ B#/012#3,4! 	+ B$53674,*8969:;! + B%!4#96947=4' +	C!             (2) 

The estimated weights and the constant are then plugged into the risk function (i.e., !! = #!) 
which now places considerably more weight on exposure than on hazard, resilience and 
vulnerability: 

D!"#$!% = 	0.03 + 0.02)*+*,-! + 	0.62/012#3,4! 	+ 	0.2053674,*8969:;! 	− 	0.13!4#96947=4!          (3) 

The spatial patterns of the DALY-weighted risk map in Figure 6 are somewhat similar to those 
observed in the unweighted maps (Figures 4 and 5). As before, the areas at highest risk of 
economic losses from epidemics remain sub-Saharan Africa and South Asia. But much of 
Central Asia, and South East Asia is considered less risky with this approach, as some areas, 
though relatively poor, are not too densely populated (unlike Central America, for example). 

 
Figure 6 Economic risk of Covid-19 using the DALY-weighted index 

Discussion and conclusions 

We developed a measurement tool to estimate the economic risk of epidemics. With growing 
globalisation and inter-connectedness among far-flung populations comes increased 
exposure to the risk of epidemics, with potentially dire implications for the world economy; 
as is quite apparent with the current Covid-19 crisis. 

The economic consequences of an epidemic, like any other natural hazard shock, can be 
delineated into damages, direct losses and indirect losses (Noy, 2016). Direct losses included 
lost income and output due to death and symptomatic illness as well as increased healthcare 
costs. If measured through the standard statistical tools used by governments to evaluate the 
cost of life (the value of statistical life, or VSL), the direct costs of pandemics like Covid-19 due 
to illness and mortality are probably much smaller than the indirect losses. This is, of course, 
especially true now for countries in which the epidemic has not yet spread indiscriminately, 
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but that are very exposed to the global shock it created (for example, tourism-dependent 
economies in the Global South). 

When we account for the ways an epidemic creates economic losses, we need to measure 
not only the direct reductions in economic activity that are attributable to changes in 
government policy (e.g., mandatory lockdowns), but also behavioural changes that are caused 
by changing subjective judgements about the risk of contraction among the still healthy 
population. These behavioural changes may be influenced not only by the characteristics of 
the epidemic contagion process and the disease virulence, but also by its media coverage and 
the fear it might generate.  

As public health systems have improved over the past century, this pandemic’s health impacts 
are unlikely to be of the magnitude of the 1918-19 Influenza pandemic, though they may still 
be on a catastrophic scale (at the time of writing, the number of confirmed cases is reaching 
a million). However, what remains maybe even more salient is the pandemic’s economic 
consequences. The exposure, vulnerability and resilience to these economic consequences 
were not ameliorated as much when public health systems developed throughout the last 
century. In contrast, globalisation of trade, increased tourism and labour flows, and the more 
recent advent of social media are all likely to have amplified behavioural responses and 
created additional vulnerabilities, thus potentially exacerbating the economic losses that will 
be experienced before this pandemic is over.  

If the extensive behavioural reaction to the SARS crisis in 2003 could be typified as a high-
prevalence-elasticity response to a disease outbreak; when the public response to an 
epidemic results in significant behavioural changes that increase in severity with the number 
of infected persons. The SARS case fits with the argument of Philipson (2000) that when 
private behaviour is strongly prevalence-elastic, the main economic cost of a disease outbreak 
is likely to arise out of preventative actions rather than directly from infections. This even 
more true with Covid-19, and it is true whatever the merits are of these preventative actions. 

A study by Perrings et al. (2014) highlights the importance of government intervention that 
targets the private costs and benefits of disease avoidance so that they induce individual 
behavioural responses, such as social distancing, which align with the overall interests of the 
wider society. This concerns the trade-off that individuals make regarding their respective 
costs and benefits from, for example, social distancing in an epidemic situation. If the benefits 
of social interactions for an individual are high (e.g., they are necessary to earn the income 
required to meet daily subsistence costs) then this could result in continued interaction during 
an epidemic and, while reducing the economic impact, can potentially increase the disease 
reproduction rate. It can also work in the opposite direction: if the individual costs of public 
avoidance are very low and benefits very high, then mass public avoidance in an epidemic, 
where the mortality and contagiousness are not significant enough to warrant such a 
response, will lead to unnecessarily large economic and welfare losses. Improved 
understanding of the dynamics of individual trade-offs could help to prioritise public health 
interventions beyond what is suggested from our measure of economic risk. 

To summarise, what is most apparent from our analysis is that the greatest economic risk 
from Covid-19 is not found in Italy or New York City, where most of the media and public 
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attention is concentrated. Rather, the highest economic risks are in countries and regions that 
do not get much global attention in normal times (such as sub-Saharan Africa) and get even 
less in the midst of the frantic reporting from the immediate frontlines of the pandemic’s 
spread. This is unfortunate as, ultimately, the economic costs will be borne there, away from 
the public eye. 

Appendix: Data and methods  

Principal components analysis 

Before going through the dimensionality reduction procedure, we standardise all variables 
and analyse the correlations to choose a proper set of variables. To compute a coherent index 
for exposure, vulnerability and resilience separately, we use principal components analysis 
(PCA), an algorithm to compress a large set of variables while retaining most of the 
information in the initial data (Ringnér, 2008). The eigenvalues, latent roots, capture the 
variations in the set of variables for that component. PCA is based on the eigen decomposition 
of positive semi-definite matrices and the singular value decomposition of rectangular 
matrices (Abdi and Williams, 2010).5 Mathematically, PCA is executed on a square symmetric 
matrix: (i) pure sums of squares and cross products (SSCP matrix); (ii) scaled sums of squares 
and cross products (covariance matrix); (iii) sums of squares and cross products from 
standardized data (correlation matrix). The correlation matrix performs well when there are 
significant differences in the variances and the units of measurement of original variables.  

DALY weighting method 

Based on DALY data from the Institute for Health Metrics and Evaluation, we calculate the 
average of DALY in the period 2012-2017 from three communicable causes: (i) diaorrhea and 
common infectious diseases; (ii) Malaria and neglected tropical diseases; (iii) Other 
communicable diseases. We use this aggregate measure of DALYs lost to these infectious 
diseases as an alternative proxy for the risk of epidemics.  One DALY equals one lost year of 
healthy life, either from year of life lost or year lived with a disability. Since the DALY 
aggregates are calculated for each country, we merge the country-level data into grid cell 
data. The assumption is the current health situation and an ideal health status are identical 
within country. We then estimate the following model by ordinary least squares (OLS): 

$%&'! =	#" + ##*+,+-.! 	+ #$/01234-5! 	+ #%64785-+9:7:;<! + #&=53:7:58>5! +	?!    

where %&'&()% is the prevalence of Covid-19 in grid g. *+,-./(0%, 1/230(&452567%, and 
80.5250390% is the first component of principal component analysis for exposure, 
vulnerability, and resilience in grid g. 

Table 1 Estimation results for national DALY 
 Hazard 13.619** (6.346) 
 Exposure 502.462*** (46.564) 
 Vulnerability 158.968*** (4.809) 

 
5 Abdi and Williams (2010) provide proof and statistical inference of PCA. 
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 Resilience -101.399*** (4.477) 
 _cons 27.727*** (3.025) 
 Obs. 16654  
 R-squared  0.166  

Robust standard errors are in parenthesis. *** p<0.01, ** p<0.05, * p<0.1.   

In Table 1, the result of three causes shows that 1 percentage point increase in the probability 
of exposure is positively related to 502 DALYs, while 1 percentage point increase in 
vulnerability is positively associated with an additional 159 DALYs points. The relation 
between hazard and DALY is smallest, the slope is almost 14. Whereas a 1-percentage-point 
increase of resilience relates to 101-DALY-point decrease. Building on these results, an 
alternative functional form to measuring economic risk uses the weights implied in the 
coefficients described in Table 1. The weights are calculated by :;"(∑ >:;">&

"'( ))$, then: 

!"#$%!& = 	0.03 + 0.02./0/12! 	+ 	0.624567$819! + 0.20:8;<91/=>;>?@! 	− 	0.13"9$>;>9<C9!     

Hazard indicators 

We use the number of Covid -19 confirmed cases per 1 million people. Data is updated on 30 
March 2020. 

Exposure indicators 

In terms of economic exposure, we use population and nighttime light density to measure 
human presence and economic activity. Nightlight data is used as a proxy for economic 
wealth; the data is described in Román et al. (2018). Transport density provides another 
relevant indicator for population density. An urban metropolitan area likely has a denser 
network of highways and air links. To get a coherent layer of transportation density, we use 
all types of transport as described in Lloyd et al. (2017). Transport databases from Open Street 
Map (OSM) include: Highway, waterway, railway network, railway station and airport. Last, 
we use the number of net incoming migrants to proxy for external economic exposure. Data 
for each variable to proxy for exposure are collected as raster format with higher resolution 
than data for hazard. Hence, we can plausibly merge with data about epidemic into grid 1 
degree by 1 degree by WGS84 projection. 

Vulnerability indicators 

Likewise, we use a set of data on economic outcomes, human development, tourism, and 
health quality to measure vulnerability. Drake et al. (2012) argue that the vulnerability to 
infectious disease outbreak is much higher in low- and middle-income countries, especially 
the vulnerability to mortality and morbidity risk. The United Nations’ Human Development 
Index (HDI) and total GDP in each grid cell, are collected from the data described in Kummu 
et al. (2018). Kummu et al. (2018) estimate Gross Grid-Cell Product by multiplying country-
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level GDP per capita (PPP) with 30 arc-sec population data.6 To get sub-national data on HDI, 
Kummu et al. (2018) develop scaling factors to combine sub-national and national data.  

Tatem et al. (2012) survey the need and availability of sub-national detailed demographic data 
that might be useful in understanding disease exposure and vulnerability. They argue that for 
improvement in our understanding of disease transmission and control, we require detailed 
spatially-referenced demographic data (for example, distinguished by cohorts and gender). 
This data is only available in low frequency in countries that conduct a comprehensive census. 
We lack data on health quality at the sub-national level; except for spatially-detailed data on 
the old population density and infant mortality rate, we use country-level measures of 
healthcare spending and number of hospital beds per 1000 population. These data are from 
the World Bank Development Indicators (WDI) and World Health Organization (WHO). We 
merge the country-level data into the grid cell data by assigning the same value for all grid-
cells within the same country.  

Resilience indicators 

Hallegatte et al. (2016) argue that early warning systems possibly reduce asset losses. We 
assume information about epidemics is accessed via the internet and mobile phones, so we 
associate higher penetration rates of these with higher resilience. We use data from the WDI 
and the International Telecommunication Union. Next, we assume that the capacity of 
government to implement economic relief policy, and household to access loans are 
positively associated with resilience. Last, we use data about ethnic and linguistic diversity to 
measure socio-cultural disparity (Alesina et al., 2003). We assume that the diversity plausibly 
affects the behaviour of individuals and communities in a hazard event. 

 

 
6 The strategy to estimate Gross Cell Product is very similar to Nordhaus and Chen (2016), but the Kummu et al. 
(2018) data were updated more recently, and are available at a higher resolution. 
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Table 3: Details of variables 

 Variable name Description Unit of 
measurement 

Kind of 
indicators 

Spatial 
availability 
 

Year 
released/ 
updated 

Data 
coverage 
by grid 

Source 

1 Covid-19 Number of confirmed cases per 1 
million people 

Number of 
people 

Hazard Country-
level 

30 March 
2020 

100% Worldometer 

2 Population 
density 

Number of persons per square 
kilometre in 2015 

Number of 
people per km2 

Exposure Resolution: 
0.5’ (1 km) 

2017 100% (CIESIN, 2018) 

3 Night-time lights Night-time light intensity in 2016 
 

Index Exposure Resolution: 
1.5’ (3 km) 

2017 100% Román et al. 
(2018) 

4 Urban built-up Human impact on land by 
urbanization activity 

Index Exposure Resolution: 
0.5’ (1 km) 

2014 100% Tuanmu and 
Jetz (2014) 

5 Transport 
networks in 2016 

Highway density  Index Exposure Resolution: 
<1 km 

2016 100% Lloyd et al. 
(2017) Airport density 

Waterway density 
Railway network 
Rail station density 

6 Net migration Number of in-migrants minus out-
migrants 

Number of 
people 

Exposure Resolution: 
0.5’ (1 km) 

2015 100% de Sherbinin et 
al. (2015) 

7 GDP Gross Domestic Product (PPP) per grid 
in 2015 (constant 2011 USD). 

USD Vulnerability Resolution: 
0.5’ (1 km) 

2018 100% Kummu et al. 
(2018) 

8 GDP per capita Gross Domestic Product per capita 
(PPP) per grid in 2015 (constant 2011 
USD). 

USD Vulnerability Resolution: 
5’ (10 km) 

2018 98% World Bank 
(WDI) 

9 HDI Human Development Index 
[0-1] 

Index Vulnerability Resolution: 
0.5’ (1 km) 

2018 100% Kummu et al. 
(2018) 

10 Tourism 
 

Share of travel and tourism to GDP Percent Vulnerability  Country 
level 

2018 94% World Bank 
(WDI) 

11 Old population 
density 

Number of female/male aged 70 or 
more per square kilometre in 2020  

Number of 
people per km2 

Vulnerability Resolution: 
0.5’ (1 km) 

2017 100% WorldPop and 
CIESIN (2018) 
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12 Infant mortality 
rate 

The number of children who die 
before their first birthday per 1,000 
births in 2017 

Proportion Vulnerability Resolution: 
0.5’ (1 km) 

2018 100% (CIESIN, 2019) 

13 Hospital beds 
 

The number of hospital beds per 1,000 
population  

Number of beds Vulnerability Country level 2015 95% World Health 
Organization 
(WHO) 

14 Out-of-pocket Share of Out-of-Pocket Expenditure on 
Healthcare 

Percent Vulnerability Country level 2014 96% World Bank 
(WDI) 

15 Health spending  Total health care expenditure as GDP   Percent Vulnerability Country level 2014 96% World Bank 
(WDI) 

17 Internet access Share of population using the Internet Percent Resilience Country level 2017 99% World Bank 
(WDI) 

18 Cellular user Mobile cellular subscriptions per 100 
people 

Numeric Resilience Country level 2017 99% International 
Telecommunicat
ion Union (ITU) 

19 Public and 
private debt 

Ratio of central government debt to 
GDP 

Percent Resilience Country level 2018 98% IMF and WDI 

Ratio of domestic credit to private 
sectors to GDP 

20 Government 
expenditure 

Ratio of government expenditure to 
GDP 

Percent Resilience Country level 2018 98% World Bank 
(WDI) 

21 Socio - Cultural 
disparity 

Ethnic disparity [0-1] Index Resilience Country level 2016 99% Alesina et al. 
(2003) Linguistic disparity [0-1]  
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